Supporting Information

Synthesis, Photophysical Property and In Vitro Evaluation of Chlorambucil Conjugated Ruthenium (II) Complex for Combined Chemo-Photodynamic Therapy against HeLa Cell

Jing-Xiang Zhang,[a] Mei Pan,*[a] and Cheng-Yong Su*[a]

[a] Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
Table of Contents

1. NMR Spectra

Fig. S1 1H NMR (CDCl$_3$) of 5-bromo-5’-(2”- (4””-(pentyloxy)phenyl)ethynyl)-2,2’-bipyridine (1) ... Page 1

Fig. S2 1H NMR(THF-d_6) of L$_1$... Page 1

Fig. S3 1H NMR (MeOH-d_4) of Ru-L .. Page 2

Fig. S4 13C NMR (MeOH-d_4) of Ru-L .. Page 2

Fig. S7 1H NMR (MeOH-d_4) of CHL-RuL .. Page 4

Fig. S8 13C NMR (MeOH-d_4) of CHL-RuL .. Page 5

2. HPLC and Mass Spectra

Fig. S5 Experimental and Simulated HR-ESI Mass Spectrum of Ru-L Page 3

Fig. S6 HPLC chromatogram of Ru-L ... Page 4

Fig. S9 Experimental HR-ESI Mass Spectrum of CHL-RuL and corresponding structure fragment. ... Page 6

Fig. S10 HPLC chromatogram of CHL-RuL ... Page 7

3. Singlet Oxygen Quantum Yield Determination

Fig. S11 ABDA Absorption decrease in the DMSO-PBS (1/199) solution containing Ru-L (10 μM) and ABDA (200 μM) with exposed to a visible light in different times (Inset: linear relationship of (I_t-I_0) vs t, I is integration of absorption of ABDA, t is duration time of illumination) ... Page 7

Fig. S12 ABDA Absorption decrease in the DMSO-PBS (1/199) solution containing CHL-RuL (10 μM) and ABDA (200 μM) with exposed to a visible light in different times (Inset: linear relationship of (I_t-I_0) vs t, I is integration of absorption of ABDA, t is duration time of illumination) ... Page 8
4. Luminescence Decay and Two-Photon induced-Emission

Fig. S14 Luminescence Decay curves of two Ru (II) complexes in deoxygenated aqueous-glycerol (1:1) solution (1 × 10⁻⁵ mol/L, λ_{ex} = 390 nm, λ_{em} = 702 nm) at 77 K. ... Page 9

Fig. S15 Two-photon induced emission of Ru-L and CHL-RuL in methanol solution. ... Page 9

5. Fluorometric Analysis and Colocalization in HeLa cell

Fig. S16 Fluorometric analysis of 5 μM Ru-L and CHL-RuL incubated with HeLa cells (2×10⁵ cell/well) for 24 h. ... Page 10

Fig. S17 Positive (mitochondria, a-d) and negative (lysosome, e-f) co-localization experiments of Ru-L ... Page 10

6. ESI Mass Spectrum Analysis of the Adduct of 2-deoxyguanosine 5'-monophosphate (dGMP) and CHL-RuL

Fig. S18 ESI mass spectrum of the mixed solution of 2-deoxyguanosine 5'-monophosphate (dGMP) and CHL-RuL after 10 h incubations at pH = 7.0 PBS solution (a) and the ionic peak of CHL-RuL (b,c), hydrolysis product (d) and also the very weak signal of mono-adduct of dGMP-CHL-RuL (e) (m/z calculated for C₇₉H₇₅CIN₁₂O₁₂PRu³⁺: 517.3364; found for 517.1522). ... Page 11-12
Fig. S1 1H NMR (CDCl$_3$) of 5-bromo-5'- (2''-(4'''-(pentyloxy)phenyl)ethynyl)-2,2'-bipyridine (1)

Fig. S2 1H NMR (THF-d_8) of L1
Fig. S3 1H NMR (MeOH-d_4) of Ru-L

Fig. S4 13C NMR (MeOH-d_4) of Ru-L
Fig. S5 Experimental and Simulated HR-ESI Mass Spectrum of Ru-L
Fig. S6 HPLC chromatogram of Ru-L: gradient mobile phase = 30% acetonitrile for 10 min, 90% acetonitrile for 10 min, then 30% acetonitrile for 10 min, flow rate = 1 mL/min, detection at 254 nm = t_r (retention time) = 9.21 min; purity = 99.0%.

Fig. S7 1H NMR (MeOH-d_4) of CHL-RuL.
Fig. S8 13C NMR (MeOH-d_4) of CHL-RuL.
Calculated (m/z): $C_{69}H_{61}Cl_2N_7O_5Ru^{2+}$, 619.6578; Found: 619.6631.

Calculated (m/z): $C_{69}H_{62}Cl_3N_7O_5Ru^{2+}$, 637.6455; Found: 637.6423.

Fig. S9 Experimental HR-ESI Mass Spectrum of CHL-RuL and corresponding structure fragment.
Fig. S10 HPLC chromatogram of CHL-RuL: gradient mobile phase = 30% acetonitrile for 10 min, 90% acetonitrile for 10 min, then 30% acetonitrile for 10 min, flow rate = 1 mL/min, detection at 254 nm = t (retention time) = 16.89 min; purity = 98.6%.

Singlet Oxygen Quantum Yield Measurements

Fig. S11 ABDA Absorption decrease in the DMSO-PBS (1/199) solution containing Ru-L (10μM) and ABDA (200μM) with exposed to a visible light in different times (Inset: linear relationship of (I_t-I_0) vs t, I is integration of absorption of ABDA, t is duration time of illumination)
Fig. S12 ABDA Absorption decrease in the DMSO-PBS (1/199) solution containing CHL-Ru-L (10 μM) and ABDA (200 μM) with exposed to a visible light in different times (Inset: linear relationship of (I_t-I_0) vs t, I is integration of absorption of ABDA, t is duration time of illumination)

Fig. S13 ABDA Absorption decrease in the DMSO-PBS (1/199) solution containing standard Rose Bengal (10μM) and ABDA (200μM) with exposed to a visible light in different times (Inset: linear relationship of (I_t-I_0) vs t, I is integration of absorption of ABDA, t is duration time of illumination)
Fluorescence Decay of two complexes

Fig. S14 Luminescence Decay curves of two Ru (II) complexes in deoxygenated aqueous-glycerol (1:1) solution (1×10^{-5} mol/L, $\lambda_{ex} = 390$ nm, $\lambda_{em} = 702$ nm) at 77 K.

Fig. S15 Two-photon induced emission of Ru-L and CHL-RuL in methanol solution ($\lambda_{ex} = 850$ nm, 1×10^{-4} M) at 298 K.
Fig. S16 Fluorometric analysis of cellular uptake extent of 5 μM Ru-L and CHL-RuL incubated with HeLa cells (2×10^5 cell/well) for 24 h.

Fig. S17 Positive (mitochondria, a-d) and negative (lysosome, e-h) co-localization experiments of Ru-L. (a, e) HeLa cells treated with Ru-L (dose concen.= 2 μM, incubation time = 6 h, λ_{ex} = 405 nm, band pass filter > 600 nm); (b) Treated with Green mitochondria marker – Invitrogen M7514 (50 nM, λ_{ex} = 488 nm); (f) Treated with Green lysosome marker – Invitrogen L7526 (50 nM, λ_{ex} = 488 nm); (c, g) Bright field images; (d, h) Merged images.
Fig. S18 ESI mass spectrum of the mixed solution of 2-deoxyguanosine 5'-monophosphate (dGMP) and CHL-RuL after 10 h incubations at pH = 7.0 PBS solution (a) and the ionic peak of CHL-RuL (b,c), hydrolysis product (d) and also the very weak signal of mono-adduct of dGMP-CHL-RuL (e) (m/z calculated for C_{79}H_{75}ClN_{12}O_{12}Pr^{3+}: 517.3364; found for 517.1522).