Supporting Information

Gradient Release of Cardiac Morphogen by Photo-responsive Polymer Micelles for Gradient-mediated Variation of Embryoid Body Differentiation

Mukesh K. Gupta1, Daniel A. Balikov1, Yunki Lee1, Edward Ko1, Christopher Yu1, Young Wook Chun1,2, Douglas B. Sawyer3, Won Shik Kim4, Hak-Joon Sung1,2,5,.

1Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

2Division of Cardiovascular Medicine, Vanderbilt University Medical Center, TN, USA.

3Maine Medical Center and MaineHealth, ME, USA.

4Department of Otorhinolaryngology, College of Medicine, Yonsei University, Seoul, Republic of Korea.

5Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Republic of Korea.
Figure S1. DLS-based size measurement of mPEG\textsubscript{113}-b-PCL\textsubscript{83}-co-CIPCL\textsubscript{98} and mPEG\textsubscript{113}-b-PCL\textsubscript{83}-co-N\textsubscript{3}PCL\textsubscript{98} micelles at 0.2 mg/mL in DPBS (pH 7.4).

Figure S2. TEM images of mPEG\textsubscript{113}-b-PCL\textsubscript{83}-co-N\textsubscript{3}PCL\textsubscript{98}-g-ONB-RA micelles at 1 mg/mL concentration (DPBS, pH 7.4, 25 °C).
Figure S3. UV absorption spectra of mPEG$_{113}$-b-PCL$_{83}$-co-N$_3$PCL$_{98}$-g-ONB-RA micelles at 0.2 mg/mL before and after gradient-mediated exposure to UV light. A decrease in absorption for a specified gradient column compared to control was used for calculating the amount of RA released from polymer micelles.
Figure S4. UV absorption spectra of mPEG$_{113}$-b-PCL$_{83}$-co-N$_3$PCL$_{98}$-g-ONB-RA micelles for time-dependent release of retinoic acid (0.2 mg/mL in DPBS, pH 7.4, 25 °C) through the photo-gradient. The gradient-mediated release data at (A) 5, (B) 15, (C) 30, and (D) 60 second time points demonstrate light intensity-dependent RA release from the polymer micelles.
Figure S5. UV absorption spectra of mPEG_{113}-b-PCL_{83}-co-N_{3}PCL_{98}-g-ONB-RA micelles for concentration-dependent release of retinoic acid after 1 min photo-irradiation. Release of RA from polymer micelles at (A) 0.2, (B) 0.1, (C) 0.075, and (D) 0.05 mg/mL concentrations. All release conditions showed a similar RA release pattern that was dependent on light intensity passing through the photo-gradient.
Figure S6. UV absorption spectra of mPEG$_{113}$-b-PCL$_{83}$-co-N$_3$PCL$_{98}$-g-ONB-RA micelles (0.05 mg/mL) before and after photo-gradient-mediated exposure for 5 seconds.