Efficient Electrochemical Detection of Cancer Cells on in-situ Surface-Functionalized MoS₂ Nanosheets

Yulin Guo a, Yijin Shu a, Aiqun Li a, Baole Li a, Jiang Pi b, Jiye Cai a, c, Huai-hong Cai a, * and Qingsheng Gao a, *

a Department of Chemistry, College of Chemistry and Materials Science, Jinan University No. 601 Huangpu Avenue West, Guangzhou 510632, China.
E-mail: tqsgao@jnu.edu.cn, thhcai@jnu.edu.cn
b Department of Microbiology and Immunology, University of Illinois, Chicago 60612, USA.
c State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.

Fig. S1 TGA curve of bare thiourea (TU), showing an obvious weight loss from 175 to 245°C associated with TU decomposition.
Fig. S2 AFM image of TU-MoS$_2$.

Fig. S3 (a) SEM and (b) HR-TEM images of bare MoS$_2$ after removing TU by H$_2$SO$_4$ treatment. After the treatment with 0.05 M H$_2$SO$_4$ at 150 °C, the bare MoS$_2$ nanosheets are finally received. The SEM image of MoS$_2$ (Figure S3a) identifies the nanosheet-like morphology similar with TU-MoS$_2$. The HR-TEM (Figure S3b) shows the visible lattice fringe of 0.27 nm indexed as the (100) or (010) of hexagonal MoS$_2$, and an interlayer spacing of 0.62 nm corresponding to MoS$_2$(002).
Fig. S4 XPS profiles of N 1s in TU-MoS$_2$ and thiourea (TU).

Fig. S5 XPS profiles of Mo 3d and S 2p in TU-MoS$_2$ and bare MoS$_2$, showing the coincident peaks of Mo 3d$_{3/2}$, Mo 3d$_{5/2}$, S 2p$_{1/2}$, and S 2p$_{3/2}$ in the both tow samples. The similar chemical environment of Mo and S is reasonably indicated in TU-MoS$_2$ and MoS$_2$.
Fig. S6 Reproducibility of GE11/TU-MoS$_2$/GCEs biosensor for the repeated three tests with different HepG2 concentration.

Table S1 Comparison of different cytosensor material for HepG2 cell detection.

<table>
<thead>
<tr>
<th>Method</th>
<th>cytosensor material</th>
<th>Linear range [cells mL$^{-1}$]</th>
<th>Detection limit [cells mL$^{-1}$]</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrochemical impedance spectroscopy</td>
<td>TU-MoS$_2$ nanosheets</td>
<td>50 - 2.0×106</td>
<td>50</td>
<td>This work</td>
</tr>
<tr>
<td>Differential pulse voltammetry</td>
<td>G-quadruplex/hemin /aptamer–AuNPs–HRP</td>
<td>1.0×102–1.0×107</td>
<td>30</td>
<td>[1]</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>CdSe/ZnS QDs</td>
<td>200-3×104</td>
<td>61</td>
<td>[2]</td>
</tr>
<tr>
<td>Electrochemiluminescence</td>
<td>TiO$_2$/CdS</td>
<td>400 – 1.0×104</td>
<td>396</td>
<td>[3]</td>
</tr>
<tr>
<td>Electrochemiluminescence</td>
<td>ZnO@CdS nanorods</td>
<td>3.0×102–1.0×104</td>
<td>256</td>
<td>[4]</td>
</tr>
<tr>
<td>Atomic force microscope</td>
<td>Au microcantilever</td>
<td>1.0×103-1.0×105</td>
<td>300</td>
<td>[5]</td>
</tr>
</tbody>
</table>