Supporting Informations

Synthesis of α-amino-lipophosphonates as cationic lipids or co-lipids for DNA transfection in dendritic cells

Mathieu Berchel1*, Sohail Akhter2,3*, Wilfried Berthe1, Cristine Gonçalves2, Marine Dubuisson2,
Chantal Pichon2, Paul-Alain Jaffrès1 and Patrick Midoux2

Table of content

Supplementary information (SI)

SI; S-1: ¹H, ³¹P, & ¹³C NMR spectra

SI; S-2: Evaluation of the stability of compounds 5a in acidic media

SI; S-3: Evaluation of the stability of compounds 5b in acidic media
SI; S-1: 1H, 31P, & 13C NMR spectra of new compounds

1H NMR (400 MHz, CD$_3$OD) of compound 1a.

13C NMR (125 MHz, CD$_3$OD) of compound 1a.
1H NMR (400 MHz, CD$_3$OD) of compound 1b.

13C NMR (125 MHz, CD$_3$OD) of compound 1b.
1H NMR (400 MHz, CD$_3$OD) of compound 1c.

1H NMR (400 MHz, CD$_3$OD) of compound 1d.
13C NMR (125 MHz, CD$_3$OD) of compound 1d.

1H NMR (400 MHz, CD$_3$OD) of compound 1e.
13C NMR (125 MHz, CDCl$_3$) of compound 3e.

1H NMR (400 MHz, CD$_3$OD) of compound 2a.
$^{13}\text{C NMR}$ (125 MHz, CDCl$_3$) of compound 2a.

$^1\text{H NMR}$ (400 MHz, CD$_3$OD) of compound 2b.
13C NMR (125 MHz, CDCl$_3$) of compound 2b.

1H NMR (400 MHz, CDCl$_3$) of compound 3a.
$^{31}\text{P NMR}$ (162 MHz, CDCl$_3$) of compound 3a.

$^{13}\text{C NMR}$ (125 MHz, CDCl$_3$) of compound 3a.
1H NMR (400 MHz, CDCl$_3$) of compound 3b.

31P NMR (162 MHz, CDCl$_3$) of compound 3b.
$^{13}\text{C NMR}$ (125 MHz, CDCl$_3$) of compound 3b.

$^1\text{H NMR}$ (400 MHz, CDCl$_3$) of compound 3d.
31P NMR (162 MHz, CDCl$_3$) of compound 3d.

13C NMR (125 MHz, CDCl$_3$) of compound 3d.
^{1}H NMR (400 MHz, CDCl$_3$) of compound 3e.

^{31}P NMR (162 MHz, CDCl$_3$) of compound 3e.
13C NMR (125 MHz, CDCl$_3$) of compound 3e.

1H NMR (400 MHz, CDCl$_3$) of compound 4a.
31P NMR (162 MHz, CDCl$_3$) of compound 4a.

13C NMR (125 MHz, CDCl$_3$) of compound 4a.
1H NMR (400 MHz, CDCl$_3$) of compound 4b.

31P NMR (162 MHz, CDCl$_3$) of compound 4b.
$^{13}\text{C NMR}$ (125 MHz, CDCl$_3$) of compound 4b.

$^1\text{H NMR}$ (400 MHz, CDCl$_3$) of compound 5a.
$^{31}\text{P NMR}$ (162 MHz, CDCl$_3$) of compound 5a.

$^{13}\text{C NMR}$ (125 MHz, CDCl$_3$) of compound 5a.
1H NMR (400 MHz, CDCl$_3$) of compound 5b.

31P NMR (162 MHz, CDCl$_3$) of compound 5b.
SI; S-2: Evaluation of the stability of compounds 5a in acidic media

1- At room temperature at \(t_0 \) (in acetate buffer, D\(_2\)O as internal probe)

- **5a** (D\(_2\)O, pH 7.4 at room temp.)
- **5a** (D\(_2\)O, pH 5.0 at room temp.)
- **5a** (D\(_2\)O, pH 4.2 at room temp.)

2- At room temperature after 5h at 37°C (in acetate buffer, D\(_2\)O as internal probe)

- **5a** (D\(_2\)O, pH 7.4 at 37°C)
- **5a** (D\(_2\)O, pH 5.0 at 37°C)
- **5a** (D\(_2\)O, pH 4.2 at 37°C)
SI; S-3: Evaluation of the stability of compounds 5b in acidic media

1- At room temperature at t₀ (in acetate buffer, D₂O as internal probe)

2- At room temperature after 5h at 37°C (in acetate buffer, D₂O as internal probe)