Supporting Information

Facile Synthesis of Gold/Gadolinium-doped Carbon Quantum Dot Nanocomposite for Magnetic Resonance Imaging and Photothermal Ablation Therapy

Gangaraju Gedda,‡ Yueh-Yun Yao,‡ Si-Han Chen, Anil V. Ghule, Yong-Chien Ling, Jia-Yaw Chang

a. Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, Republic of China
b. Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
c. Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.

*Corresponding authors: Anil V. Ghule, Yong-Chien Ling, Jia-Yaw Chang
‡Gangaraju Gedda and Yueh-Yun Yao contributed equally to this work

Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan, Republic of China
E-mail: anighule@gmail.com, ycling@mx.nthu.edu.tw, jychang@mail.ntust.edu.tw
Tel.: +886-2-27303636
Fax: +886-2-27376644
Figure S1. Representative UV-Vis-NIR absorption spectrum of Gd@CQDs

Figure S2. Representative UV-Vis-NIR absorption spectrum of (a) HAuCl₄ (b) Gd@CQDs (c) HAuCl₄-Gd@CQDs complex without heating (d) Au/GdC nanocomposite at 80 °C for 120 min.
Figure S3. Representative XRD Spectrum of Au/GdC nanocomposite
Figure S4. Electron microscopic observations. (A) TEM image (B) HR-TEM images.
Figure S5. DLS histogram of the Au@GdC nanocomposite
Figure S6. Effect of various concentrations of Au/Gd on survival and hatching rates of zebrafish grown to 96 hpf.
Figure S7. UV-Visible-NIR spectra of the nanocomposite before and after irradiation with the NIR laser (808 nm, 2 W/cm²).