Supporting Information for

Near-infrared fluorescent probes for the detection of glutathione and their application in the fluorescent imaging of living cells and tumor-bearing mice

Dayoung Lee, a† Keunsoo Jeong, b† Xiao Luo, c Gayoung Kim, b Youjun Yang, c Xiaoqiang Chen, *a,d Sehoon Kim, *b and Juyoung Yoon* a

a Department of Chemistry and Nano Science (BK21), Ewha Womans University, Seoul 120-750, Korea.
b Center for Theragnosis, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Korea.
c State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Rd. 130, Shanghai 200236, China.
d State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.

jyoon@ewha.ac.kr; sehoonkim@kist.re.kr; chenxq@njtech.edu.cn
†equally contributed to this work
Contents

Figure S1. 1H NMR (300 MHz) of compound 1 in CDCl$_3$.................................S3
Figure S2. 13C NMR (75 MHz) of compound 1 in CDCl$_3$.................................S3
Figure S3. ESI mass spectrum of compound 1...S4
Figure S4. 1H NMR (300 MHz) of compound 2 in CDCl$_3$.................................S4
Figure S5. 13C NMR (75 MHz) of compound 2 in CDCl$_3$.................................S5
Figure S6. FAB mass spectrum of compound 2...S5
Figure S7. Fluorescence titrations of probe 1 (10 μM) with GSH (0-50 eq.) in HEPES (0.01 M, pH 7.4) containing 1% DMSO...S6
Figure S8. Fluorescence titrations of probe 2 (10 μM) with GSH (0-50 eq.) in HEPES (0.01 M, pH 7.4) containing 1% DMSO...S6
Figure S9. Normalized fluorescence responses of probe 1 (1 μM) to changing GSH concentrations in DMSO-HEPES (0.01M, pH 7.4) (1:99, v/v).................................S7
Figure S10. Normalized fluorescence responses of probe 2 (1 μM) to changing GSH concentrations in DMSO-HEPES (0.01M, pH 7.4) (1:99, v/v).................................S7
Figure S11. LC/MS characterization of probe 1+GSH..S8
Figure S12. LC/MS characterization of probe 2+GSH..S8
Figure S13. Fluorescent changes of probe 1 (10 μM) upon the addition of Cys, Hcy, and GSH (10 equiv.) in HEPES (0.01 M, pH 7.4) containing 1% DMSO........................S9
Figure S14. Fluorescent changes of probe 2 (10 μM) upon the addition of Cys, Hcy, and GSH (10 equiv.) in HEPES (0.01 M, pH 7.4) containing 1% DMSO........................S9
Figure S15. Time-dependent change of probe 1 (10 μM) with the addition of 10 equiv. of GSH or Hcy in DMSO-HEPES (0.01M, pH 7.4) (1:99, v/v).................................S10
Figure S16. Time-dependent change of probe 2 (10 μM) with the addition of 10 equiv. of GSH or Hcy in DMSO-HEPES (0.01M, pH 7.4) (1:99, v/v).................................S10
Figure S17. In vivo fluorescence responses of probe 2 in SCC7 tumor-bearing mice (n=4). a) Temporal fluorescence images of mice before and after the probe injection (λ_{ex} = 745 nm, λ_{em} = 820 nm), where probe 2 (40 μL, 10 μM in PBS, pH 7.4) was injected peritumorally (tumor side, red arrow) or subcutaneously (normal side, green arrow). b) Temporal intensity changes of fluorescence from tumor (circle) and
normal (square) tissues obtained from the in vivo imaging (a)..S11
Figure S1. 1H NMR (300 MHz) of compound 1 in CDCl$_3$.

Figure S2. 13C NMR (75 MHz) of compound 1 in CDCl$_3$.
Figure S3. ESI mass spectrum of compound 1.

Figure S4. 1H NMR (300 MHz) of compound 2 in CDCl$_3$
Figure S5. 13C NMR (75 MHz) of compound 2 in CDCl$_3$.

Figure S6. FAB mass spectrum of compound 2.
Figure S7. Fluorescence titrations of probe 1 (10 μM) with GSH (0-50 eq.) in HEPES (0.01 M, pH 7.4) containing 1% DMSO (excitation wavelength : 780 nm). Spectrum was obtained 60 min after mixing.

Figure S8. Fluorescence titrations of probe 2 (10 μM) with GSH (0-50 eq.) in HEPES (0.01 M, pH 7.4) containing 1% DMSO (excitation wavelength : 780 nm). Spectrum was obtained 60 min after mixing.
Figure S9. Normalized fluorescence responses of probe 1 (1 μM) to changing GSH concentrations in DMSO-HEPES (0.01M, pH 7.4) (1:99, v/v). (Detection limit = 6.32×10⁻⁷M)

Figure S10. Normalized fluorescence responses of probe 2 (1 μM) to changing GSH concentrations in DMSO-HEPES (0.01M, pH 7.4) (1:99, v/v). (Detection limit = 3.31×10⁻⁷M)
Figure S11. LC/MS characterization of probe 1+GSH.

Figure S12. LC/MS characterization of probe 2+GSH.
Figure S13. Fluorescent changes of probe 1 (10 μM) upon the addition of Cys, Hcy, and GSH (10 equiv.) in HEPES (0.01 M, pH 7.4) containing 1% DMSO (Excitation wavelength: 650 nm). Each spectrum was obtained 30 min after mixing.

Figure S14. Fluorescent changes of probe 2 (10 μM) upon the addition of Cys, Hcy, and GSH (10 equiv.) in HEPES (0.01 M, pH 7.4) containing 1% DMSO (Excitation wavelength: 650 nm). Each spectrum was obtained 30 min after mixing.
Figure S15. Time-dependent change of probe 1 (10 μM) with the addition of 10 equiv. of GSH or Hcy in DMSO-HEPES (0.01M, pH 7.4) (1:99, v/v) (Excitation wavelength: 780 nm).

Figure S16. Time-dependent change of probe 2 (10 μM) with the addition of 10 equiv. of GSH or Hcy in DMSO-HEPES (0.01M, pH 7.4) (1:99, v/v) (Excitation wavelength: 780 nm).
Figure S17. *In vivo* fluorescence responses of probe 2 in SCC7 tumor-bearing mice (n=4). a) Temporal fluorescence images of mice before and after the probe injection ($\lambda_{ex} = 745$ nm, $\lambda_{em} = 820$ nm), where probe 2 (40 μL, 10 μM in PBS, pH 7.4) was injected peritumorally (tumor side, red arrow) or subcutaneously (normal side, green arrow). b) Temporal intensity changes of fluorescence from tumor (circle) and normal (triangle) tissues obtained from the *in vivo* imaging (a).