Supporting Information

Facile fabrication of a resveratrol loaded phospholipid@reduced graphene oxide nanoassembly for targeted and near-infrared laser-triggered chemo/photothermal synergistic therapy of cancer in vivo

Luo Hai, Dinggeng He, Xiaoxiao He*, Kemin Wang*, Xue Yang, Jinquan Liu, Hong Cheng, Xiaoqin Huang and Jingfang Shangguan

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology,
Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, College of Chemistry and Chemical Engineering, Hunan University,
Changsha 410082 (China)
Structure of phospholipids used in this work.

As shown in Fig. S1, DMPG = 1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol; biotin-PEG-DSPE=1,2-distearoyl-sn-glycero-3-phosphoethanolamine poly (ethylene glycol)_{2000} biotin; FA-PEG-DSPE=1,2-distearoyl-sn-glycero-3-phosphoethanolamine poly (ethylene glycol)_{5000} folate.

![Fig. S1 Structures of DMPG, biotin-PEG-DSPE, and FA-PEG-DSPE.](image-url)
Fig. S2 TEM images of naked rGO (A) and FA-PEG-Lip@rGO (B) with a 100 nm scale bar.

Fig. S3 Dispersion stability assays. A picture of naked rGO (a) and FA-PEG-Lip@rGO (b) in different solutions, including PBS, cell medium, and serum and
incubated over a period of 7 days.

Fig. S4 Optical properties of FA/atto647N-PEG-Lip@rGO and FA-PEG-Lip@rGO/Res. (A) UV-vis spectra of FA-PEG-Lip@rGO (a) and FA/atto647N-PEG-Lip@rGO (b). (B) Fluorescence emission spectrum of FA-PEG-Lip@rGO (a) and FA/atto647N-PEG-Lip@rGO (b). Insert: Fluorescence images. (Obtained with in vivo
optical imaging system, excitation: 640 nm (±15 nm) bandpass filter, emission: 695-770 nm bandpass filter). (C) Fluorescence emission spectrum of free Res (a) and FA-PEG-Lip@rGO/Res (b) with the same Res concentration recorded by using 325 nm as the excitation wavelength.

Fig. S5 Stability assessment of Res ethanol solution (6.25 μg mL⁻¹) measured using changes in 306 nm absorption under 60°C (A), and 780 nm NIR laser (B) exposure (mean ± standard deviation of three experiments).
Fig. S6 Relative cell viabilities of A549 cells after treatment with FA-PEG-Lip@rGO (L+), FA-PEG-Lip@rGO/Res, and FA-PEG-Lip@rGO/Res (L+). All data are presented as the average ± standard error (n = 3).

Table S1. Hydrodynamic size and corresponding poly-dispersity index (PDI) of different samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Naked rGO</th>
<th>DMPG Lip@rGO</th>
<th>FA-PEG-Lip@rGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (nm)</td>
<td>122.3</td>
<td>127.6</td>
<td>221.7</td>
</tr>
<tr>
<td>PDI</td>
<td>0.257</td>
<td>0.101</td>
<td>0.067</td>
</tr>
</tbody>
</table>