Fluorescent carbon dots from antineoplastic drug-Etoposide for bioimaging \textit{in vitro and in vivo}

Bin Wu,a Rongrong Zhu,a Mei Wang,a Peng Liang,a Yechang Qian,a,b Shilong Wanga,*

a Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, PR China
b Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, PR China

\textbf{Corresponding Author}

Yechang Qian* and Shilong Wang+
Tel +86 2165918108 Fax +86 2136070892, Email: qianyechang@163.com
Tel +86 2165982595 Fax +86 2165982595, Email: wsl@tongji.edu.cn
List of contents

Figure S1: Molecule formation of Etoposide.
Figure S2: UV and PL spectrum(a) and integral area of fluorescence and absorption (b) of CDs and quinine sulfate.
Figure S3: PL intensity of the CDs at pH=5-10 at 365 nm.
Figure S4: Cytotoxicity profiles in Hela cells obtained after 24 (black) and 48 (red) h co-incubation with VP16 at 50, 100,200, 400 mg/L; error bars indicate the standard deviation of mean (n=4).
Figure S5: Photographs of serum stability after the CDs mixed with serum (200 mg/L, n=3) at different lengths of time (0, 0.5, 1, 2 and 4 h).
Figure S6: The interaction between CDs and BSA. CDs mixed with BSA (200 mg/L, n=3) at different lengths of time (0.5, 1, 2 and 4 h) and control without CDs by Bradford assay.
Figure S7: In vivo fluorescence images at 3, 6 and 24 h post hypodermic (a) and intravenous (b) injection (0.1 mL, 2 g/L CDs) at 475 nm. Control with 0.1 mL PBS.
Figure S8: In vivo fluorescence images at 3, 6 and 24 h post intravenous injection (0.1 mL, 2 g/L CDs), their viscera of heart, liver, spleen, lung and kidney and urine (3 and 6 h) on the cotton balls at 475 nm.
Figure S9: Fluorescence intensity analysis of Hela cells upon 0.5 h co-incubation with CDs (100 mg/L) under 4 °C and 37 °C at 405, 488 and 543 nm by ImageJ.
Figure S10: CDs storage in water after 3 months.
Quantum yield is calculated by the equation:

$$Q_{\text{CDs}} = \frac{m_{\text{CDs}}}{m_{\text{QS}}} \times 0.54 \times 100\%$$

- Q_{CDs}: Quantum yield of CDs
- m_{CDs}: slope of CDs
- m_{QS}: slope of quinine sulfate
- 0.54: Quantum yield of quinine sulfate
Figure S3: PL intensity of the CDs at pH=5-10 at 365 nm.

Figure S4: Cytotoxicity profiles in Hela cells obtained after 24 (black) and 48 (red) h coincubation with VP16 at 50, 100, 200, 400 mg/L; error bars indicate the standard deviation of mean (n=4).
Figure S5: Photographs of serum stability after the CDs mixed with serum (200 mg/L, n=3) at different lengths of time (0, 0.5, 1, 2 and 4 h).
Figure S6: The interaction between CDs and BSA. CDs mixed with BSA (200 mg/L, n=3), at different lengths of time (0.5, 1, 2 and 4 h) and control without CDs by Bradford assay.

Figure S7: *In vivo* fluorescence images at 3, 6 and 24 h post hypodermic (a) and intravenous (b) injection (0.1 mL, 2 g/L CDs) at 475 nm. Control with 0.1 mL PBS.
Figure S8: *In vivo* fluorescence images at 3, 6 and 24 h post intravenous injection (0.1 mL, 2 g/L CDs), their viscera of heart, liver, spleen, lung and kidney and urine (3 and 6 h) on cotton ball at 475 nm.

Figure S9: Fluorescence intensity analysis of Hela cells upon 0.5 h coincubation with CDs (100 mg/L) under 4 °C and 37 °C at 405, 488 and 543 nm by ImageJ. 405 nm of 37 °C as the control.
Figure S10: CDs (3.6 g/L) storage in water after 3 months.