Supplemental Information

Impact of structurally modifying hyaluronic acid on CD44 interaction

D. Bhattacharya, a D. Svechkarev, a J. J. Souchek, a T. K. Hill, a M. A. Taylor, b A. Natarajan b,c and A. M. Mohs a,c,d,*

a. Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA.
b. Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA.
c. Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA.
d. Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858, USA
Figure S1. Standard curve for determination of degree of deacetylation.
Figure S2: 13C NMR spectra of sulfated HA
Figure S3. 1H NMR sulfated HA
Figure S4. 1H NMR of s-deHA
Figure S5. 1H NMR of deacetylated HA
Figure S6: 13C NMR spectra of HA
Figure S7: 1H NMR spectra of HA.

<table>
<thead>
<tr>
<th></th>
<th>Elemental analysis</th>
<th>Degree of substitution of sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>Native</td>
<td>-</td>
<td>25.25</td>
</tr>
<tr>
<td>Sulfated</td>
<td>7.23</td>
<td>27.45</td>
</tr>
</tbody>
</table>

Table S1. Elemental analysis and degree of substitution of native and sulfated HA.