TOWARDS AN IMPROVED HIV-MICROBICIDE ACTIVITY THROUGH THE CO-ENCAPSULATION OF NRTI DRUGS IN BIOCOMPATIBLE METAL ORGANIC FRAMEWORKS NANOCARRIERS

M.T. Marcos-Almaraz, R. Gref, V. Agostoni, C. Kreuz, P. Clayette, C. Serre, P. Couvreur, P. Horcajada

1 Institut Lavoisier, Université de Versailles St-Quentin, UMR CNRS 8180, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France.
2 Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France.
3 Institutde Sciences Moléculaires, UMR 8214, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay, France.
4 Laboratoire de Neurovirologie, Bertin-Pharma, CEA, 18 route du Panorama, B.P. 6, 92265 Fontenay aux Roses Cedex, France.
5 Institut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles, PSL Research University, 75005, Paris, France.
Figure S1. Chromatogram and absorption spectra of 3TC-Tp, AZT-Tp, AZT-Mp and BTC released from AZT-Tp/3TC-TP loaded MIL-100(Fe) NPs and incubated during 24 h in PBS supplemented with 10% calf serum
Figure S2. Chromatogram and absorption spectrum of commercial AZT-Mp (50 mg.mL$^{-1}$).
Figure S3. TEM images of MIL-100(Fe) NPs just after encapsulation of AZT-Tp and 3TC-Tp (on the top) and after 2 months-storage at room temperature conditions upon lyophilization (on the middle). Scale bar = 100 nm. On the bottom: Colloidal stability of the co-loaded MIL-100(Fe) NPs just reconstituted in PBS-FBS after their lyophilization and storage for 2 months ($n = 3$).
Figure S4. Cell viability of macrophages treated with empty or co-loaded nanoMOFs. Data obtained from two independent experiments \((n = 2)\), performed each in triplicate. Results are expressed as percentage of cell viability in comparison to untreated control.