SUPPORTING INFORMATION

INSERTION OF NANOSTRUCTURED TITANATES INTO THE PORES OF AN ANODISED TiO_2 NANOTUBE ARRAY BY MECHANICALLY STIMULATED ELECTROPHORETIC DEPOSITION

Alysson S. Martins, a,b* Christian Harito a, Dmitry V. Bavykin a, Frank C. Walsh a, Marcos R. de V. Lanza b.

a Energy Technology Research Group, Faculty of Engineering and the Environment, University of Southampton, UK.
b Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP, 13566-590, Brazil.

*Correspondence author: marcoslanza@iqsc.usp.br

![Graph showing Raman shift and intensity](image-url)

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017
Fig. S1: Raman spectra of titanate nanotubes - TiNT (A) and nanosheets - TiNS (B) as prepared and calcinated at 450 °C. The asterisks tagged in the peaks of TiNS arise from TMAOH [1].

TEM characterization

The electronic transmission microscopy (TEM) was realized using a JEOL 3010 microscope, operating at 300 kV. The TiNS/TiO$_2$NT-EPDmod electrode was scratched and the substrate removed was sonicated for 5 min in ethanol then 100 µL was transferred onto a copper grid covered with a perforated carbon film.
Figure S2: TEM image of (a) TiNS/TiO$_2$NT-EPDmod and (b) bare TiO$_2$NT. Arrows indicate corresponding structures. Sample has been obtained by scratching the coat from the substrate following its dispersion in ethanol under ultrasound.

References