Supporting Information

Optical and Electronic Properties of Graphene Quantum Dots with Oxygen-Containing Groups: A Density Functional Theory Study

Jianguang Fenga*, Hongzhou Donga, Liyan Yua*, and Lifeng Donga, b*

a College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

b Department of Physics, Hamline University, St. Paul 55104, USA

*Corresponding authors: donglifeng@qust.edu.cn, liyanyu@qust.edu.cn, and fengjg@qust.edu.cn
Fig. S1 Structures of C24, C32, and C42 and their functionalized GQDs.
Table S1: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states. The values were obtained using B3LYP/6-31G* for the optimized ground state geometry. Water was taken into account as solvent by using the polarizable continuum model.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.92</td>
<td>645.75</td>
<td>0.0017</td>
</tr>
<tr>
<td>2</td>
<td>1.98</td>
<td>626.58</td>
<td>0.0604</td>
</tr>
<tr>
<td>3</td>
<td>2.22</td>
<td>559.83</td>
<td>3.2236</td>
</tr>
<tr>
<td>4</td>
<td>2.31</td>
<td>537.56</td>
<td>1.3336</td>
</tr>
<tr>
<td>5</td>
<td>2.35</td>
<td>528.55</td>
<td>0.0016</td>
</tr>
<tr>
<td>6</td>
<td>2.46</td>
<td>503.84</td>
<td>0.0085</td>
</tr>
<tr>
<td>7</td>
<td>2.51</td>
<td>494.23</td>
<td>0.0003</td>
</tr>
<tr>
<td>8</td>
<td>2.55</td>
<td>485.79</td>
<td>0.0025</td>
</tr>
<tr>
<td>9</td>
<td>2.65</td>
<td>466.64</td>
<td>0.0001</td>
</tr>
<tr>
<td>10</td>
<td>2.66</td>
<td>466.94</td>
<td>0.0009</td>
</tr>
<tr>
<td>11</td>
<td>2.70</td>
<td>459.25</td>
<td>0.0023</td>
</tr>
<tr>
<td>12</td>
<td>2.77</td>
<td>447.34</td>
<td>0.0064</td>
</tr>
<tr>
<td>13</td>
<td>2.83</td>
<td>438.45</td>
<td>0.0859</td>
</tr>
<tr>
<td>14</td>
<td>2.85</td>
<td>435.23</td>
<td>0.0473</td>
</tr>
<tr>
<td>15</td>
<td>2.88</td>
<td>430.78</td>
<td>0.0003</td>
</tr>
<tr>
<td>16</td>
<td>2.90</td>
<td>427.42</td>
<td>0.0438</td>
</tr>
<tr>
<td>17</td>
<td>2.94</td>
<td>421.05</td>
<td>0.0002</td>
</tr>
<tr>
<td>18</td>
<td>2.96</td>
<td>419.30</td>
<td>0.0004</td>
</tr>
<tr>
<td>19</td>
<td>2.98</td>
<td>415.56</td>
<td>0.0555</td>
</tr>
<tr>
<td>20</td>
<td>3.00</td>
<td>413.80</td>
<td>0.0020</td>
</tr>
</tbody>
</table>
Table S2: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-COOH8-EF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.89</td>
<td>656.69</td>
<td>0.0306</td>
</tr>
<tr>
<td>2</td>
<td>1.95</td>
<td>636.73</td>
<td>0.0339</td>
</tr>
<tr>
<td>3</td>
<td>2.16</td>
<td>573.46</td>
<td>3.3237</td>
</tr>
<tr>
<td>4</td>
<td>2.24</td>
<td>552.76</td>
<td>0.3598</td>
</tr>
<tr>
<td>5</td>
<td>2.25</td>
<td>550.44</td>
<td>1.0524</td>
</tr>
<tr>
<td>6</td>
<td>2.33</td>
<td>532.89</td>
<td>0.0000</td>
</tr>
<tr>
<td>7</td>
<td>2.45</td>
<td>507.06</td>
<td>0.0002</td>
</tr>
<tr>
<td>8</td>
<td>2.51</td>
<td>494.85</td>
<td>0.0013</td>
</tr>
<tr>
<td>9</td>
<td>2.53</td>
<td>490.36</td>
<td>0.0146</td>
</tr>
<tr>
<td>10</td>
<td>2.56</td>
<td>485.73</td>
<td>0.0114</td>
</tr>
<tr>
<td>11</td>
<td>2.67</td>
<td>464.65</td>
<td>0.0327</td>
</tr>
<tr>
<td>12</td>
<td>2.72</td>
<td>455.79</td>
<td>0.0023</td>
</tr>
<tr>
<td>13</td>
<td>2.73</td>
<td>453.79</td>
<td>0.0371</td>
</tr>
<tr>
<td>14</td>
<td>2.80</td>
<td>443.60</td>
<td>0.0311</td>
</tr>
<tr>
<td>15</td>
<td>2.81</td>
<td>440.78</td>
<td>0.1879</td>
</tr>
<tr>
<td>16</td>
<td>2.85</td>
<td>435.10</td>
<td>0.0014</td>
</tr>
<tr>
<td>17</td>
<td>2.85</td>
<td>434.78</td>
<td>0.0701</td>
</tr>
<tr>
<td>18</td>
<td>2.88</td>
<td>429.88</td>
<td>0.0125</td>
</tr>
<tr>
<td>19</td>
<td>2.90</td>
<td>427.87</td>
<td>0.0003</td>
</tr>
<tr>
<td>20</td>
<td>2.91</td>
<td>426.11</td>
<td>0.0456</td>
</tr>
</tbody>
</table>
Table S3: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-COC8-EF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.80</td>
<td>687.71</td>
<td>0.0003</td>
</tr>
<tr>
<td>2</td>
<td>1.85</td>
<td>669.13</td>
<td>0.1736</td>
</tr>
<tr>
<td>3</td>
<td>2.06</td>
<td>601.53</td>
<td>2.8095</td>
</tr>
<tr>
<td>4</td>
<td>2.16</td>
<td>572.93</td>
<td>0.8856</td>
</tr>
<tr>
<td>5</td>
<td>2.24</td>
<td>553.94</td>
<td>0.0001</td>
</tr>
<tr>
<td>6</td>
<td>2.30</td>
<td>538.68</td>
<td>0.1991</td>
</tr>
<tr>
<td>7</td>
<td>2.35</td>
<td>527.84</td>
<td>0.0016</td>
</tr>
<tr>
<td>8</td>
<td>2.44</td>
<td>508.02</td>
<td>0.0508</td>
</tr>
<tr>
<td>9</td>
<td>2.47</td>
<td>501.17</td>
<td>0.1794</td>
</tr>
<tr>
<td>10</td>
<td>2.50</td>
<td>496.02</td>
<td>0.0039</td>
</tr>
<tr>
<td>11</td>
<td>2.56</td>
<td>483.82</td>
<td>0.0092</td>
</tr>
<tr>
<td>12</td>
<td>2.58</td>
<td>479.74</td>
<td>0.1394</td>
</tr>
<tr>
<td>13</td>
<td>2.63</td>
<td>471.58</td>
<td>0.0426</td>
</tr>
<tr>
<td>14</td>
<td>2.66</td>
<td>466.34</td>
<td>0.0143</td>
</tr>
<tr>
<td>15</td>
<td>2.71</td>
<td>456.95</td>
<td>0.0001</td>
</tr>
<tr>
<td>16</td>
<td>2.73</td>
<td>454.74</td>
<td>0.0105</td>
</tr>
<tr>
<td>17</td>
<td>2.75</td>
<td>450.85</td>
<td>0.0028</td>
</tr>
<tr>
<td>18</td>
<td>2.77</td>
<td>447.11</td>
<td>0.0097</td>
</tr>
<tr>
<td>19</td>
<td>2.80</td>
<td>442.82</td>
<td>0.0549</td>
</tr>
<tr>
<td>20</td>
<td>2.80</td>
<td>442.64</td>
<td>0.0072</td>
</tr>
</tbody>
</table>
Table S4: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-CHO8-EF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.86</td>
<td>666.28</td>
<td>0.0666</td>
</tr>
<tr>
<td>2</td>
<td>1.92</td>
<td>645.45</td>
<td>0.0106</td>
</tr>
<tr>
<td>3</td>
<td>2.12</td>
<td>585.08</td>
<td>3.0540</td>
</tr>
<tr>
<td>4</td>
<td>2.15</td>
<td>577.03</td>
<td>0.0464</td>
</tr>
<tr>
<td>5</td>
<td>2.20</td>
<td>564.16</td>
<td>1.3135</td>
</tr>
<tr>
<td>6</td>
<td>2.22</td>
<td>558.48</td>
<td>0.0244</td>
</tr>
<tr>
<td>7</td>
<td>2.35</td>
<td>527.94</td>
<td>0.0057</td>
</tr>
<tr>
<td>8</td>
<td>2.42</td>
<td>512.11</td>
<td>0.0029</td>
</tr>
<tr>
<td>9</td>
<td>2.47</td>
<td>502.14</td>
<td>0.0300</td>
</tr>
<tr>
<td>10</td>
<td>2.50</td>
<td>496.58</td>
<td>0.0024</td>
</tr>
<tr>
<td>11</td>
<td>2.56</td>
<td>483.51</td>
<td>0.1313</td>
</tr>
<tr>
<td>12</td>
<td>2.61</td>
<td>474.99</td>
<td>0.0018</td>
</tr>
<tr>
<td>13</td>
<td>2.67</td>
<td>463.61</td>
<td>0.1062</td>
</tr>
<tr>
<td>14</td>
<td>2.69</td>
<td>460.84</td>
<td>0.0439</td>
</tr>
<tr>
<td>15</td>
<td>2.69</td>
<td>460.65</td>
<td>0.0078</td>
</tr>
<tr>
<td>16</td>
<td>2.71</td>
<td>458.08</td>
<td>0.0007</td>
</tr>
<tr>
<td>17</td>
<td>2.72</td>
<td>455.48</td>
<td>0.0760</td>
</tr>
<tr>
<td>18</td>
<td>2.73</td>
<td>454.68</td>
<td>0.2813</td>
</tr>
<tr>
<td>19</td>
<td>2.73</td>
<td>453.83</td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>2.75</td>
<td>450.10</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Table S5: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-OCH$_3$8-EF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>GQD-OCH$_3$8-EF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.89</td>
<td>655.88</td>
<td>0.0094</td>
</tr>
<tr>
<td>2</td>
<td>1.95</td>
<td>636.93</td>
<td>0.0591</td>
</tr>
<tr>
<td>3</td>
<td>2.17</td>
<td>572.11</td>
<td>3.2518</td>
</tr>
<tr>
<td>4</td>
<td>2.26</td>
<td>548.75</td>
<td>1.2808</td>
</tr>
<tr>
<td>5</td>
<td>2.30</td>
<td>539.57</td>
<td>0.0482</td>
</tr>
<tr>
<td>6</td>
<td>2.39</td>
<td>519.47</td>
<td>0.0043</td>
</tr>
<tr>
<td>7</td>
<td>2.48</td>
<td>500.18</td>
<td>0.0068</td>
</tr>
<tr>
<td>8</td>
<td>2.52</td>
<td>491.67</td>
<td>0.0044</td>
</tr>
<tr>
<td>9</td>
<td>2.55</td>
<td>485.38</td>
<td>0.0124</td>
</tr>
<tr>
<td>10</td>
<td>2.57</td>
<td>482.05</td>
<td>0.0084</td>
</tr>
<tr>
<td>11</td>
<td>2.67</td>
<td>464.71</td>
<td>0.0005</td>
</tr>
<tr>
<td>12</td>
<td>2.74</td>
<td>452.81</td>
<td>0.0413</td>
</tr>
<tr>
<td>13</td>
<td>2.77</td>
<td>448.11</td>
<td>0.1280</td>
</tr>
<tr>
<td>14</td>
<td>2.79</td>
<td>444.95</td>
<td>0.0650</td>
</tr>
<tr>
<td>15</td>
<td>2.84</td>
<td>436.54</td>
<td>0.0001</td>
</tr>
<tr>
<td>16</td>
<td>2.86</td>
<td>434.20</td>
<td>0.0253</td>
</tr>
<tr>
<td>17</td>
<td>2.87</td>
<td>431.70</td>
<td>0.0018</td>
</tr>
<tr>
<td>18</td>
<td>2.88</td>
<td>430.44</td>
<td>0.0015</td>
</tr>
<tr>
<td>19</td>
<td>2.94</td>
<td>421.70</td>
<td>0.1200</td>
</tr>
<tr>
<td>20</td>
<td>2.95</td>
<td>420.27</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Table S6: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-OH8-EF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.90</td>
<td>652.61</td>
<td>0.0184</td>
</tr>
<tr>
<td>2</td>
<td>1.96</td>
<td>633.10</td>
<td>0.0372</td>
</tr>
<tr>
<td>3</td>
<td>2.18</td>
<td>567.90</td>
<td>3.2101</td>
</tr>
<tr>
<td>4</td>
<td>2.27</td>
<td>547.34</td>
<td>1.1266</td>
</tr>
<tr>
<td>5</td>
<td>2.29</td>
<td>540.37</td>
<td>0.2173</td>
</tr>
<tr>
<td>6</td>
<td>2.39</td>
<td>519.86</td>
<td>0.0002</td>
</tr>
<tr>
<td>7</td>
<td>2.46</td>
<td>503.82</td>
<td>0.0113</td>
</tr>
<tr>
<td>8</td>
<td>2.51</td>
<td>494.43</td>
<td>0.0021</td>
</tr>
<tr>
<td>9</td>
<td>2.59</td>
<td>479.31</td>
<td>0.0197</td>
</tr>
<tr>
<td>10</td>
<td>2.60</td>
<td>476.20</td>
<td>0.0004</td>
</tr>
<tr>
<td>11</td>
<td>2.69</td>
<td>461.41</td>
<td>0.0000</td>
</tr>
<tr>
<td>12</td>
<td>2.71</td>
<td>457.31</td>
<td>0.0250</td>
</tr>
<tr>
<td>13</td>
<td>2.74</td>
<td>452.99</td>
<td>0.1156</td>
</tr>
<tr>
<td>14</td>
<td>2.79</td>
<td>444.90</td>
<td>0.0560</td>
</tr>
<tr>
<td>15</td>
<td>2.83</td>
<td>437.66</td>
<td>0.0406</td>
</tr>
<tr>
<td>16</td>
<td>2.83</td>
<td>437.53</td>
<td>0.0063</td>
</tr>
<tr>
<td>17</td>
<td>2.88</td>
<td>430.01</td>
<td>0.0012</td>
</tr>
<tr>
<td>18</td>
<td>2.89</td>
<td>428.79</td>
<td>0.0074</td>
</tr>
<tr>
<td>19</td>
<td>2.92</td>
<td>423.88</td>
<td>0.0860</td>
</tr>
<tr>
<td>20</td>
<td>2.95</td>
<td>420.72</td>
<td>0.0117</td>
</tr>
</tbody>
</table>
Table S7: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-COOH2-SF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.17</td>
<td>7494.02</td>
<td>0.0251</td>
</tr>
<tr>
<td>2</td>
<td>1.11</td>
<td>1114.07</td>
<td>0.0017</td>
</tr>
<tr>
<td>3</td>
<td>1.18</td>
<td>1047.61</td>
<td>0.3385</td>
</tr>
<tr>
<td>4</td>
<td>1.31</td>
<td>945.73</td>
<td>0.0641</td>
</tr>
<tr>
<td>5</td>
<td>1.44</td>
<td>861.00</td>
<td>0.0416</td>
</tr>
<tr>
<td>6</td>
<td>1.53</td>
<td>812.15</td>
<td>0.5973</td>
</tr>
<tr>
<td>7</td>
<td>1.57</td>
<td>791.34</td>
<td>0.0615</td>
</tr>
<tr>
<td>8</td>
<td>1.60</td>
<td>773.97</td>
<td>0.0582</td>
</tr>
<tr>
<td>9</td>
<td>1.74</td>
<td>712.37</td>
<td>0.2000</td>
</tr>
<tr>
<td>10</td>
<td>1.83</td>
<td>677.86</td>
<td>0.0103</td>
</tr>
<tr>
<td>11</td>
<td>1.89</td>
<td>657.72</td>
<td>0.0900</td>
</tr>
<tr>
<td>12</td>
<td>1.95</td>
<td>635.76</td>
<td>0.0481</td>
</tr>
<tr>
<td>13</td>
<td>1.98</td>
<td>625.79</td>
<td>0.2016</td>
</tr>
<tr>
<td>14</td>
<td>2.05</td>
<td>603.92</td>
<td>0.0583</td>
</tr>
<tr>
<td>15</td>
<td>2.07</td>
<td>598.03</td>
<td>0.0632</td>
</tr>
<tr>
<td>16</td>
<td>2.08</td>
<td>595.81</td>
<td>0.0804</td>
</tr>
<tr>
<td>17</td>
<td>2.13</td>
<td>580.77</td>
<td>0.0115</td>
</tr>
<tr>
<td>18</td>
<td>2.16</td>
<td>573.53</td>
<td>0.0013</td>
</tr>
<tr>
<td>19</td>
<td>2.21</td>
<td>560.86</td>
<td>0.0249</td>
</tr>
<tr>
<td>20</td>
<td>2.26</td>
<td>547.54</td>
<td>0.0186</td>
</tr>
</tbody>
</table>
Table S8: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-CHO2-SF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.09</td>
<td>13648.62</td>
<td>0.0050</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>1109.47</td>
<td>0.0147</td>
</tr>
<tr>
<td>3</td>
<td>1.27</td>
<td>974.93</td>
<td>0.2008</td>
</tr>
<tr>
<td>4</td>
<td>1.34</td>
<td>928.17</td>
<td>0.0923</td>
</tr>
<tr>
<td>5</td>
<td>1.42</td>
<td>874.74</td>
<td>0.6971</td>
</tr>
<tr>
<td>6</td>
<td>1.53</td>
<td>812.85</td>
<td>0.1301</td>
</tr>
<tr>
<td>7</td>
<td>1.58</td>
<td>783.46</td>
<td>0.0384</td>
</tr>
<tr>
<td>8</td>
<td>1.72</td>
<td>721.79</td>
<td>0.0034</td>
</tr>
<tr>
<td>9</td>
<td>1.74</td>
<td>711.20</td>
<td>0.0041</td>
</tr>
<tr>
<td>10</td>
<td>1.80</td>
<td>689.68</td>
<td>0.0013</td>
</tr>
<tr>
<td>11</td>
<td>1.84</td>
<td>672.80</td>
<td>0.0699</td>
</tr>
<tr>
<td>12</td>
<td>1.93</td>
<td>641.03</td>
<td>0.0079</td>
</tr>
<tr>
<td>13</td>
<td>1.99</td>
<td>622.92</td>
<td>0.0325</td>
</tr>
<tr>
<td>14</td>
<td>2.02</td>
<td>613.69</td>
<td>0.0715</td>
</tr>
<tr>
<td>15</td>
<td>2.04</td>
<td>607.49</td>
<td>0.0782</td>
</tr>
<tr>
<td>16</td>
<td>2.11</td>
<td>588.30</td>
<td>0.2196</td>
</tr>
<tr>
<td>17</td>
<td>2.14</td>
<td>578.97</td>
<td>0.0844</td>
</tr>
<tr>
<td>18</td>
<td>2.18</td>
<td>567.74</td>
<td>0.0105</td>
</tr>
<tr>
<td>19</td>
<td>2.19</td>
<td>565.78</td>
<td>0.1189</td>
</tr>
<tr>
<td>20</td>
<td>2.26</td>
<td>548.31</td>
<td>0.0452</td>
</tr>
</tbody>
</table>
Table S9: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-COC2-SF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.57</td>
<td>789.15</td>
<td>0.3348</td>
</tr>
<tr>
<td>2</td>
<td>1.92</td>
<td>644.85</td>
<td>0.1678</td>
</tr>
<tr>
<td>3</td>
<td>2.04</td>
<td>608.33</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>2.08</td>
<td>596.25</td>
<td>0.0104</td>
</tr>
<tr>
<td>5</td>
<td>2.23</td>
<td>556.63</td>
<td>2.0054</td>
</tr>
<tr>
<td>6</td>
<td>2.32</td>
<td>535.12</td>
<td>0.0008</td>
</tr>
<tr>
<td>7</td>
<td>2.40</td>
<td>516.61</td>
<td>0.0050</td>
</tr>
<tr>
<td>8</td>
<td>2.44</td>
<td>508.67</td>
<td>0.0076</td>
</tr>
<tr>
<td>9</td>
<td>2.49</td>
<td>498.39</td>
<td>0.0014</td>
</tr>
<tr>
<td>10</td>
<td>2.50</td>
<td>495.87</td>
<td>0.0378</td>
</tr>
<tr>
<td>11</td>
<td>2.57</td>
<td>481.96</td>
<td>0.0033</td>
</tr>
<tr>
<td>12</td>
<td>2.64</td>
<td>470.07</td>
<td>0.0384</td>
</tr>
<tr>
<td>13</td>
<td>2.66</td>
<td>466.34</td>
<td>0.1729</td>
</tr>
<tr>
<td>14</td>
<td>2.68</td>
<td>463.05</td>
<td>0.0893</td>
</tr>
<tr>
<td>15</td>
<td>2.71</td>
<td>458.31</td>
<td>0.0193</td>
</tr>
<tr>
<td>16</td>
<td>2.71</td>
<td>458.23</td>
<td>0.2353</td>
</tr>
<tr>
<td>17</td>
<td>2.74</td>
<td>452.59</td>
<td>0.0101</td>
</tr>
<tr>
<td>18</td>
<td>2.78</td>
<td>445.93</td>
<td>0.0546</td>
</tr>
<tr>
<td>19</td>
<td>2.82</td>
<td>440.23</td>
<td>0.0044</td>
</tr>
<tr>
<td>20</td>
<td>2.84</td>
<td>436.86</td>
<td>0.0064</td>
</tr>
</tbody>
</table>
Table S10: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-OH2-SF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.13</td>
<td>9747.91</td>
<td>0.0128</td>
</tr>
<tr>
<td>2</td>
<td>1.01</td>
<td>1227.33</td>
<td>0.0037</td>
</tr>
<tr>
<td>3</td>
<td>1.11</td>
<td>1113.25</td>
<td>0.4164</td>
</tr>
<tr>
<td>4</td>
<td>1.33</td>
<td>935.68</td>
<td>0.0187</td>
</tr>
<tr>
<td>5</td>
<td>1.43</td>
<td>868.97</td>
<td>0.0449</td>
</tr>
<tr>
<td>6</td>
<td>1.48</td>
<td>835.59</td>
<td>0.0576</td>
</tr>
<tr>
<td>7</td>
<td>1.59</td>
<td>777.61</td>
<td>0.0137</td>
</tr>
<tr>
<td>8</td>
<td>1.68</td>
<td>736.51</td>
<td>0.8984</td>
</tr>
<tr>
<td>9</td>
<td>1.77</td>
<td>698.76</td>
<td>0.0224</td>
</tr>
<tr>
<td>10</td>
<td>1.77</td>
<td>698.72</td>
<td>0.1997</td>
</tr>
<tr>
<td>11</td>
<td>1.87</td>
<td>662.55</td>
<td>0.3631</td>
</tr>
<tr>
<td>12</td>
<td>1.96</td>
<td>631.21</td>
<td>0.0677</td>
</tr>
<tr>
<td>13</td>
<td>2.01</td>
<td>618.16</td>
<td>0.0048</td>
</tr>
<tr>
<td>14</td>
<td>2.04</td>
<td>606.57</td>
<td>0.0047</td>
</tr>
<tr>
<td>15</td>
<td>2.14</td>
<td>580.19</td>
<td>0.0023</td>
</tr>
<tr>
<td>16</td>
<td>2.14</td>
<td>579.19</td>
<td>0.0300</td>
</tr>
<tr>
<td>17</td>
<td>2.22</td>
<td>558.08</td>
<td>0.1221</td>
</tr>
<tr>
<td>18</td>
<td>2.24</td>
<td>554.47</td>
<td>0.0273</td>
</tr>
<tr>
<td>19</td>
<td>2.31</td>
<td>537.80</td>
<td>0.0436</td>
</tr>
<tr>
<td>20</td>
<td>2.32</td>
<td>534.70</td>
<td>0.0015</td>
</tr>
</tbody>
</table>
Table S11: Absorption energies, wavelengths, and oscillator strengths for the first 20 singlet states of GQD-OCH$_3$2-SF.

<table>
<thead>
<tr>
<th>Singlet states</th>
<th>Absorption energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Oscillator strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12</td>
<td>10642.94</td>
<td>0.0109</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>1238.36</td>
<td>0.0055</td>
</tr>
<tr>
<td>3</td>
<td>1.10</td>
<td>1124.28</td>
<td>0.4376</td>
</tr>
<tr>
<td>4</td>
<td>1.33</td>
<td>929.23</td>
<td>0.0181</td>
</tr>
<tr>
<td>5</td>
<td>1.42</td>
<td>870.34</td>
<td>0.0287</td>
</tr>
<tr>
<td>6</td>
<td>1.50</td>
<td>826.81</td>
<td>0.0578</td>
</tr>
<tr>
<td>7</td>
<td>1.59</td>
<td>781.07</td>
<td>0.0263</td>
</tr>
<tr>
<td>8</td>
<td>1.69</td>
<td>734.07</td>
<td>0.9008</td>
</tr>
<tr>
<td>9</td>
<td>1.77</td>
<td>700.32</td>
<td>0.1973</td>
</tr>
<tr>
<td>10</td>
<td>1.79</td>
<td>690.84</td>
<td>0.0050</td>
</tr>
<tr>
<td>11</td>
<td>1.85</td>
<td>668.48</td>
<td>0.3895</td>
</tr>
<tr>
<td>12</td>
<td>1.94</td>
<td>637.65</td>
<td>0.0705</td>
</tr>
<tr>
<td>13</td>
<td>2.00</td>
<td>619.69</td>
<td>0.0078</td>
</tr>
<tr>
<td>14</td>
<td>2.05</td>
<td>604.27</td>
<td>0.0037</td>
</tr>
<tr>
<td>15</td>
<td>2.14</td>
<td>579.45</td>
<td>0.0197</td>
</tr>
<tr>
<td>16</td>
<td>2.15</td>
<td>577.22</td>
<td>0.0009</td>
</tr>
<tr>
<td>17</td>
<td>2.22</td>
<td>557.31</td>
<td>0.1203</td>
</tr>
<tr>
<td>18</td>
<td>2.26</td>
<td>547.89</td>
<td>0.0220</td>
</tr>
<tr>
<td>19</td>
<td>2.30</td>
<td>538.12</td>
<td>0.0462</td>
</tr>
<tr>
<td>20</td>
<td>2.34</td>
<td>530.30</td>
<td>0.0020</td>
</tr>
</tbody>
</table>
Fig. S2 Calculated absorption spectra of C24-C42 and their functionalized GQDs.
Fig. S3 Isosurfaces of HOMO and LUMO in GQDs with different oxygen-containing groups in ground state. The positive and negative orbital lobes are displayed in red and green, respectively. (a) C132-CHO8-EF, (b) C132-OCH38-EF, (c) C132-OH8-EF, (d) C132-CHO2-SF, (e) C132-OCH32-SF, (f) C132-OH2-SF.
Fig. S4 Structures of edge-functionalized GQDs with carboxyl and epoxy groups.

Fig. S5 Calculated absorption spectra of edge-functionalized GQDs with carboxyl and epoxy groups in Fig. S4.
Fig. S6 Schematics of surface functionalization position on C132 GQDs: (a) C132-R2-SF-1, (b) C132-R2-SF-2, (c) C132-R2-SF-3, and (d) C132-R2-SF-4. R indicates the functional group.
Fig. S7 Calculated absorption spectra of the surface-functionalized GQDs with five oxygen groups in Fig. S6.
Table S12: HOMO energy, LUMO energy, HOMO-LUMO gap, and absorption maximum wavelengths of the surface-functionalized GQDs with different positions.

<table>
<thead>
<tr>
<th>GQDs</th>
<th>HOMO energy (eV)</th>
<th>LUMO energy (eV)</th>
<th>HOMO-LUMO gap (eV)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C132-COOH2-SF</td>
<td>-4.04</td>
<td>-3.73</td>
<td>0.32</td>
<td>812.15</td>
</tr>
<tr>
<td>C132-COOH2-SF-1</td>
<td>-4.02</td>
<td>-3.74</td>
<td>0.28</td>
<td>847.90</td>
</tr>
<tr>
<td>C132-COOH2-SF-2</td>
<td>-4.04</td>
<td>-3.71</td>
<td>0.33</td>
<td>809.14</td>
</tr>
<tr>
<td>C132-COOH2-SF-3</td>
<td>-4.06</td>
<td>-3.75</td>
<td>0.31</td>
<td>854.68</td>
</tr>
<tr>
<td>C132-COOH2-SF-4</td>
<td>-4.08</td>
<td>-3.67</td>
<td>0.42</td>
<td>777.45</td>
</tr>
<tr>
<td>C132-COC2-SF</td>
<td>-4.84</td>
<td>-2.98</td>
<td>1.86</td>
<td>556.63</td>
</tr>
<tr>
<td>C132-COC2-SF-1</td>
<td>-4.95</td>
<td>-2.77</td>
<td>2.18</td>
<td>556.52</td>
</tr>
<tr>
<td>C132-COC2-SF-2</td>
<td>-5.01</td>
<td>-2.75</td>
<td>2.26</td>
<td>567.66</td>
</tr>
<tr>
<td>C132-COC2-SF-3</td>
<td>-4.95</td>
<td>-2.79</td>
<td>2.16</td>
<td>552.95</td>
</tr>
<tr>
<td>C132-COC2-SF-4</td>
<td>-4.89</td>
<td>-2.76</td>
<td>2.13</td>
<td>566.34</td>
</tr>
<tr>
<td>C132-CHO2-SF</td>
<td>-4.00</td>
<td>-3.60</td>
<td>0.39</td>
<td>574.74</td>
</tr>
<tr>
<td>C132-CHO2-SF-1</td>
<td>-3.94</td>
<td>-3.68</td>
<td>0.27</td>
<td>891.45</td>
</tr>
<tr>
<td>C132-CHO2-SF-2</td>
<td>-3.95</td>
<td>-3.66</td>
<td>0.29</td>
<td>1162.59</td>
</tr>
<tr>
<td>C132-CHO2-SF-3</td>
<td>-3.98</td>
<td>-3.64</td>
<td>0.33</td>
<td>567.19</td>
</tr>
<tr>
<td>C132-CHO2-SF-4</td>
<td>-4.02</td>
<td>-3.62</td>
<td>0.40</td>
<td>778.60</td>
</tr>
<tr>
<td>C132-OCH$_3$2-SF</td>
<td>-4.24</td>
<td>-3.87</td>
<td>0.37</td>
<td>734.07</td>
</tr>
<tr>
<td>C132-OCH$_3$2-SF-1</td>
<td>-4.21</td>
<td>-3.89</td>
<td>0.32</td>
<td>844.92</td>
</tr>
<tr>
<td>C132-OCH$_3$2-SF-2</td>
<td>-4.26</td>
<td>-3.85</td>
<td>0.41</td>
<td>556.08</td>
</tr>
<tr>
<td>C132-OCH$_3$2-SF-3</td>
<td>-4.32</td>
<td>-3.84</td>
<td>0.47</td>
<td>538.26</td>
</tr>
<tr>
<td>C132-OCH$_3$2-SF-4</td>
<td>-4.27</td>
<td>-3.80</td>
<td>0.47</td>
<td>795.92</td>
</tr>
<tr>
<td>C132-OH2-SF</td>
<td>-4.22</td>
<td>-3.86</td>
<td>0.36</td>
<td>736.51</td>
</tr>
<tr>
<td>C132-OH2-SF-1</td>
<td>-4.20</td>
<td>-3.88</td>
<td>0.31</td>
<td>850.95</td>
</tr>
<tr>
<td>C132-OH2-SF-2</td>
<td>-4.25</td>
<td>-3.84</td>
<td>0.41</td>
<td>535.91</td>
</tr>
<tr>
<td>C132-OH2-SF-3</td>
<td>-4.30</td>
<td>-3.84</td>
<td>0.46</td>
<td>544.20</td>
</tr>
<tr>
<td>C132-OH2-SF-4</td>
<td>-4.26</td>
<td>-3.79</td>
<td>0.46</td>
<td>800.63</td>
</tr>
</tbody>
</table>
Fig. S8 Isosurfaces of HOMO and LUMO in GQDs with different surface positions in ground state. (a) C132-COOH2-SF-1, (b) C132-COOH2-SF-2, (c) C132-COOH2-SF-3, (d) C132-COOH2-SF-4.
Table S13: Excitation energies, wavelengths, oscillator strengths, transition coefficients, and associated eigenvalues of the dominated excitation in GQDs.

<table>
<thead>
<tr>
<th>GQDs</th>
<th>Dominated excitation</th>
<th>Excitation energy(eV)</th>
<th>Wavelength(nm)</th>
<th>Oscillator strength(f^*)</th>
<th>Transition coefficients</th>
<th>Associated eigenvalues(λ_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C132-OCH$_3$-EF</td>
<td>S3</td>
<td>2.17</td>
<td>572.11</td>
<td>3.25</td>
<td>H-1 -> L</td>
<td>0.47</td>
</tr>
<tr>
<td>C132-CHO8-EF</td>
<td>S3</td>
<td>2.12</td>
<td>585.09</td>
<td>3.05</td>
<td>H-1 -> L</td>
<td>0.56</td>
</tr>
<tr>
<td>C132-OH8-EF</td>
<td>S3</td>
<td>2.18</td>
<td>567.89</td>
<td>3.21</td>
<td>H-1 -> L</td>
<td>-0.46</td>
</tr>
<tr>
<td>C132-OCH$_3$2-SF</td>
<td>S8</td>
<td>1.69</td>
<td>734.08</td>
<td>0.90</td>
<td>H-7 -> L</td>
<td>0.10</td>
</tr>
<tr>
<td>C132-CHO2-SF</td>
<td>S5</td>
<td>1.42</td>
<td>874.74</td>
<td>0.70</td>
<td>H-5 -> L</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H-2-> L</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H-> L+1</td>
<td>0.65</td>
</tr>
<tr>
<td>C132-OH2-SF</td>
<td>S8</td>
<td>1.68</td>
<td>736.51</td>
<td>0.90</td>
<td>H-5 -> L</td>
<td>-0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H-2-> L</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H-> L+2</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H-> L+3</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Fig. S9 Natural transition orbital pairs for the dominant excited state of GQDs. (a) C132-CHO8-EF, (b) C132-OCH38-EF, (c) C132-OH8-EF, (d) C132-CHO2-SF, (e) C132-OCH32-SF, (f) C132-OH2-SF. For this state the “hole” is on the left, the “particle” is on the right; The values represent the associated eigenvalue (λ_i) of respective NTOs.
Fig. S10 Representation of the electron difference density between the dominated excited state minus ground state for GQDs. (a) C132-CHO8-EF, (b) C132-OCH₃8-EF, (c) C132-OH8-EF, (d) C132-CHO2-SF, (e) C132-OCH₂2-SF, (f) C132-OH2-SF. At the bottom, the lateral views are shown. The blue area plots the surface where the value of the difference density is -0.0002 and the yellow area plots the surface where the value of the difference density is +0.0002.