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Fig. S1. Cross-sectional FE-SEM images of the PVA@Au NF, (b) PVA@Ag NF and (c) PVA@Cu NF.
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Fig. S2. FE-SEM images of surface and junctions between nanofibers (a) PVA@Au NF, (b) PVA@Ag NF and (c) PVA@Cu NF networks



   

  

Fig. S3. The digital optical images of the PVA@Ag NF networks on glass substrates at different polymer electrospinning times.
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Fig. S4. Log-log plot of (T-0.5 -1) vs. Log (Z0/RS) for PVA@Ag NF network TCE. (Percolation theory)

The relationship between sheet resistance, RS, and transmittance, T, in a percolation network is described by1

(1)
𝑇= [1 + 1

Π(𝑍0𝑅𝑆)
1
(𝑛+ 1)] - 2

where Z0 is the impedance of free space (377 Ω), n is the percolation exponent, and Π is the percolative figure-of-merit. Π 

follows the relation

(2)
Π= 2[ 𝜎𝑂𝑝 𝜎𝐷𝐶,𝐵

(𝑍0𝑡𝑚𝑖𝑛𝜎𝑂𝑝)𝑛]
1
(𝑛+ 1)

Where σDC is the dc conductivity of the film, σOp is proportional to the absorption coefficient (σOp~α/Z0), and tmin is the critical 

thickness below which the dc conductivity becomes thickness dependent. The percolative regime can be identified as a straight 

line on a log-log plot of (T-1/2 -1) versus RS (equivalent to a graph of T vs. RS). 

Figure S4 shows the log-log plot of (T-1/2 -1) vs. Z0/RS for PVA@Ag NF network TCE. Here, the properties of the PVA@Ag NF 

network TCE were fitted with equation (1), which confirmed that the performance of the PVA@Ag NF network TCE was limited 

by percolation theory. The percolation parameters of the PVA@Ag NF network TCEs are summarized in Table 1. It is reported 

that percolation parameters largely depend on the uniformity of the network.2 The high Π and low n values observed here may 

be ascribed to the spatially uniform network. This uniformity was a consequence of the evenly distributed polymer nanofiber 

template achieved by the electrospinning process. 



Table S1. Percolation parameters PVA@Ag NF network TCE as compared with literature results.

Sample n Π Ref.

PVA@Ag NF 0.35 770 Present work

Ag nanotrough 0.10 495 Ref 3

Metal nanowire 0.81 47 Ref 1

Ag nanowire 3.7 26 Ref 2

Table S2. Properties of the PVA@metal NF network electrodes, compared to other flexible, transparent electrodes from 

previous research results.

Reference Bending radius Transparency (550nm) Sheet resistance (Ω/)

PVA@Au NF 2 mm ~90% 6.08 

PVA@Ag NF 2 mm ~90% 2.56

PVA@Cu NF 2 mm ~90% 3.21

Ref 4 2 mm 90% 2

Ref 3 2.5 mm 92% 100

Ref 5 6 mm 90% 25

Ref 6 4 mm 80% 10

Ref 7 - 85% 20



  

Fig. S5. (a) Thickness of a NOA63 film (b) Side-view FE-SEM images of the embedded PVA@Ag NF network NOA 63 TCE.
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Fig.S6. Digital photograph of an experimental set up (infrared thermal imaging camera) for temperature measurement of E-PVA@Ag NF 

network TCE heater.

 

Fig. S7. Infrared thermal imaging photograph of E-PVA@Ag NF network TCE temperature distribution at an applied voltage of 4.0 V with time.
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