Electronic Supplementary Information

Fluorescent linear CO\(_2\)-derived poly(hydroxyurethane) for cool white LED

Bin Liu\(^a\), Ya-Ling Wang\(^b\), Wei Bai\(^a\), Jun-Ting Xu\(^a\), Zhi-Kang Xu\(^a\), Ke Yang\(^c\), Yong-Zhen Yang\(^b\), Xing-Hong Zhang*\(^{,a}\) and Bin-Yang Du*\(^{,a}\)

\(^a\) Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, P. R. China.

*E-mail: xhzhang@zju.edu.cn (X.-H. Z.); duby@zju.edu.cn (B.-Y. D.)

\(^b\) MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China.

\(^c\) Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801 USA (Current address: The Dow Chemical Company, Marlborough, MA 01752 USA).
Figure S1. 1H NMR spectrum of TMDSPOMD (400 MHz, CDCl$_3$).

Figure S2. 13C NMR spectrum of TMDSPOMD (101 MHz, CDCl$_3$).
Figure S3. 13C-DEPT 135 NMR spectrum of TMDSPOMD (101 MHz, CDCl$_3$).

Figure S4. 1H NMR spectrum of BDOMDO (400 MHz, CDCl$_3$).
Figure S5. 13C NMR spectrum of BDOMDO (101 MHz, CDCl$_3$).

Figure S6. 13C-DEPT 135 NMR spectrum of BDOMDO (101 MHz, CDCl$_3$).
Figure S7. 1H NMR spectrum of P1 (400 MHz, CDCl$_3$). The ratio of primary hydroxyl group and secondary hydroxyl group is 1:1.97.

Figure S8. 13C NMR spectrum of P1 (101 MHz, CDCl$_3$).
Figure S9. 13C-DEPT 135 NMR spectrum of P1 (101 MHz, CDCl$_3$).

Figure S10. HSQC NMR spectrum of P1 (101 MHz, CDCl$_3$).
Figure S11. 1H NMR spectrum of P2 (400 MHz, CDCl$_3$). The ratio of primary hydroxyl group and secondary hydroxyl group is 1:2.33.

Figure S12. 13C NMR spectrum of P2 (101 MHz, CDCl$_3$).
Figure S13. 13C-DEPT 135 NMR spectrum of P2 (101 MHz, CDCl$_3$).

Figure S14. HSQC NMR spectrum of P2 (101 MHz, CDCl$_3$).
Figure S15. 1H NMR spectrum of P3 (400 MHz, d_6-DMSO). The ratio of Primary hydroxyl group and secondary hydroxyl group is 1:2.08.

Figure S16. 13C NMR spectrum of P3 (101 MHz, d_6-DMSO).
Figure S17. 13C-DEPT 135 NMR spectrum of P3 (101 MHz, d_6-DMSO).

Figure S18. HSQC NMR spectrum of P3 (101 MHz, d_6-DMSO).
Figure S19. 1H NMR spectrum of P4 (400 MHz, d_6-DMSO). The ratio of Primary hydroxyl group and secondary hydroxyl group is 1:1.62.

Figure S20. 13C NMR spectrum of P4 (101 MHz, d_6-DMSO).
Figure S21. ^{13}C-DEPT 135 NMR spectrum of $\textbf{P4}$ (101 MHz, d_6-DMSO).

Figure S22. HSQC NMR spectrum of $\textbf{P4}$ (101 MHz, d_6-DMSO).
Figure S23. TGA curves of FPHUs ($T_d,_{5wt.\%}=259^\circ C$, $258^\circ C$, $265^\circ C$, $238^\circ C$, with a heating rate of $10^\circ C \text{ min}^{-1}$ under N_2 atmosphere).

Figure S24. PL spectra of FPHUs in ethanol with the same mole structural unit.
Figure S25. 1H NMR spectrum of P5 (400 MHz, CDCl$_3$).

Figure S26. 13C NMR spectrum of P5 (101 MHz, CDCl$_3$).
Figure S27. 13C-DEPT 135 NMR spectrum of P5 (101 MHz, CDCl$_3$).

Figure S28. HSQC NMR spectrum of P5 (101 MHz, CDCl$_3$).
Figure S29. FT-IR spectra of P2 and P4.

Figure S30. GPC curves of P1 at different time.
Figure S31. GPC curves of P2 at different time. Insert: linear fitting curve of P2 in ethanol with different molecular weights (Y-axis: the logarithm of fluorescence intensity at 440 nm).

Figure S32. GPC curves of P3 at different time. Insert: linear fitting curve of P3 in ethanol with different molecular weights (Y-axis: the logarithm of fluorescence intensity at 440 nm).
Figure S33. GPC curves of P4 at different time. Insert: linear fitting curve of P4 in ethanol with different molecular weights (Y-axis: the logarithm of fluorescence intensity at 440 nm).

Figure S34. PL spectra of P1 in ethanol at different concentrations. Insert: liner relationship of fluorescence intensity at 440 nm versus the concentrations of P1.
Figure S35. (a,b) Size distribution of P1 with 40% (a) and 50% (b) water (f_{water}) fractions measured by DLS.

Figure S36. Blue-to-red spectral composition of the bulk P1.
Figure S37. Emission spectra of the WLEDs under different working voltages.

Figure S38. CIE 1931 chromaticity diagram for the WLED.