Supporting Information

Eu3+ based mesoporous hybrid material with tunable multicolor emission modulated by fluoride ion: application for selective sensing toward fluoride ion

Yajuan Li*, Tao Yu, Xudong Yu

Fig. S1 FTIR spectra for NTA (A), precursor NTA-Si (B) and NTA-functionalized SBA-15 mesoporous hybrid material NTA-S15 (C).

Fig. S2 SEM images of Eu-containing mesoporous hybrid material Eu(NTA-S15)\textsubscript{L}.

This journal is © The Royal Society of Chemistry 2017
Fig. S3 Excitation spectra of the Eu-containing mesoporous hybrid Eu(NTA-S15)\(\text{L}\).

Fig. S4 Luminescence time decay curves for the sample Eu(NTA-S15)\(\text{L}\) (black line: experimental data; red line: fitted data).
Fig. S5 Emission spectra of Eu(NTA-S15)_3L in THF solutions (1 mg/mL) upon the addition of F^- (10^{-3} mol/L) in the presence of other mixture anions (10^{-3} mol/L).

Fig. S6 Emission spectra of organic ligand L (c=10^{-3} mol/L) in THF solution (a) and ligand NTA (c=10^{-3} mol/L) in THF solution (b). Measurement parameters: EX Slit: 2.5 nm; EM Slit: 2.5 nm; PMT Voltage: 600 V.
Fig. S7 Thermogravimetry trace (—) and differential thermogravimetry trace (---) curves (DTG) of pure complex Eu(NTA)$_2$L.

Table S1 The main bands and their assignments of IR spectra for NTA(a), NTA-Si (b) and NTA-S15 (c).

<table>
<thead>
<tr>
<th>compounds</th>
<th>ν(CH$_2$)</th>
<th>ν(C=O)</th>
<th>ν(N-H)</th>
<th>δ(N-H)</th>
<th>ν(Si-O)</th>
<th>ν(C-Si)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTA</td>
<td>3118</td>
<td>1607</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTA-Si</td>
<td>2926</td>
<td>1697,1631</td>
<td>3399</td>
<td>1538</td>
<td>1128</td>
<td>1189</td>
</tr>
<tr>
<td>NTA-S15</td>
<td>2973</td>
<td>1660</td>
<td>3424</td>
<td>1469</td>
<td>1086,798,459</td>
<td></td>
</tr>
</tbody>
</table>