Supplementary Information for

Confocal Microscopic Investigation of a Single Squaraine Dye Aggregate

G. M. Paternò1,*, L. Moretti2, A. Barker1, N. Barbero3, S. Galliano3, C. Barolo3,4, G. Lanzani1,2 and F. Scotognella1,2

1 Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milan, Italy

2 Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

3 Dipartimento di Chimica and NIS Interdepartmental and INSTM Reference Centre, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy

4 ICxT Interdepartmental Centre, Università di Torino, Lungo Dora Siena 100, 10100 Torino, Italy

*Email - giuseppe.paterno@iit.it, giusepate@gmail.com
Figure S1. Surface profile of the aggregates as measured by profilometry.

Figure S2. (a) Height and (b) phase AFM images of the VG1-C8 film. The calculated mean-square-roughness is 1.4 nm.
Figure S3. PL spectra taken at the three different regions namely, film, aggregated-border and centre, alongside the Gaussian fittings. We can see that, whereas the PL spectra coming from the film and border are in-fact a convolution of both monomeric and aggregate emission, the PL taken at the centre of the aggregate can be fitted effectively with one Gaussian (plus a broad background contribution).
Figure S4. PL time-decay profiles for the VG1-C₈ and aggregate. The time-constants for the aggregate are $\tau_1 = 39.1 \pm 0.6$ ps ($A_1 = 95\%$) and $\tau_2 = 1.5 \pm 0.2$ ns ($A_2 = 5\%$), and for the film are $\tau_1 = 38.2 \pm 2$ ps ($A_1 = 62\%$) and $\tau_2 = 1.6 \pm 1$ ns ($A_2 = 38\%$).