Electronic Supplementary Information

Microwave-assisted hydrothermal synthesis of solid-state carbon dots with intensive emission for white light-emitting devices

Jingxia Zhenga,b, Yaling Wanga,b, Feng Zhanga,b, Yongzhen Yanga,b,*, Xuguang Liua,c,*, Kunpeng Guoa,b,*, Hua Wanga,b, Bingshe Xua,b

a Key Laboratory of Interface Science and Engineering in Advanced Materials, (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China.
b Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China.
c College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

*Corresponding authors: yyztyut@126.com (Yongzhen Yang), liuxuguang@tyut.edu.cn (Xuguang Liu), guokunpeng@tyut.edu.cn (Kunpeng Guo)
Figure S1 (a) UV-vis absorption spectra, (b) PL emission spectra and (c) blue-to-red spectral composition of Si-CDs at different molar ratios of CA to KH-792.

Figure S2 (a) UV-vis absorption spectra, (b) PL emission spectra and (c) blue-to-red spectral composition at different temperatures.
composition of Si-CDs at different temperatures.

Figure S3 PL emission spectra of C-CDs, K-CDs and Si-CDs prepared at the same conditions.

Figure S4 TGA curve of Si-CDs under N₂ atmosphere.
Figure S5 PL spectra changes of as-prepared Si-CDs under continuous UV ($\lambda_{ex}=365$ nm) radiation.

Inset: Dependence of PL intensity on radiation time for Si-CDs under 365 nm.

Figure S6 AFM image of Si-CDs.