SUPPORTING INFORMATION

Eight-armed Polydiacetylene under Benzoxazine Dimer
Branched Polylactide: A Structural Combination for
Reversible Thermochromic Effect and Its Model Case for
Free-Standing Poly(lactic acid) Film

Choltirosn Sutapina, Nantinee Mantaranonb, Suwabun Chirachanchaib,*

a Nanoscience and Technology (International Program) Graduate School, Chulalongkorn University, Wangmai, Pathumwan, Bangkok 10330 Thailand
b The Petroleum and Petrochemical College, Chulalongkorn University, Wangmai, Pathumwan, Bangkok 10330 Thailand

* To whom correspondence should be addressed. Tel.: 662-218-4134; E-mail address: csuwabun@chula.ac.th
Synthesis of linear polylactide conjugated diacetylene (linear PLLA-DA)

Phenol (37.8 mg, 0.4 mmol), tin(II) 2-ethylhexanoate (40.5 mg, 0.1 mmol), and L-lactide (1441.4 mg, 10 mmol) were dried under vacuum for 3 hours. The ring opening polymerization was performed under N₂ at 120 °C in bulk state until it becomes a viscous. The product was precipitated in cold diethyl ether to obtain linear polylactide with 98 % conversion.

1H NMR (500 MHz, CDCl₃, ppm): 7.36 (m, 2H, Ar-H), 7.07 (m, 1H, Ar-H), 6.90 (t, 1H, Ar-H), 6.80 (d, J = 8.37 Hz, 1H, Ar-H), 5.14 (dd, J = 6.89, 13.97 Hz, 39H, -OCH(CH₃)C(O)- of PLLA), 4.33 (d, J = 6.88 Hz, 1H, terminal -OC(O)CH(CH₃)-OH), 1.55 (t, 120H, OCH(CH₃)C(O)- of PLLA). 1H NMR analysis indicated a DPₙ of 20 lactide units per chain.

GPC analysis indicated Mₙ = 2999 g mol⁻¹ and Mₘ/Mₙ = 1.10.

The conjugation reaction of linear polylactide with 10,12-pentacosadiynoic acid (149.8 mg, 0.4 mmol) was proceeded as the same procedure as 4BzD-8PLLA-8DA to obtain PLLA-DA with 92 % yield. 1H NMR (500 MHz, CDCl₃, ppm): 7.36 (d, J = 8.35 Hz, 2H, Ar-H), 7.06 (d, J = 7.50 Hz, 1H, Ar-H), 6.89 (m, 1H, Ar-H), 6.79 (d, J = 8.33 Hz, 1H, Ar-H), 5.14 (dd, J = 6.92, 14.01 Hz, 36H, -OCH(CH₃)C(O)- of PLLA), 4.34 (s, 1H, terminal -OC(O)CH(CH₃)-OH), 2.51 (s, 2H, -OC(O)CH²- of DA), 2.22 (t, 4H, -(CH₂)C≡C- of DA), 1.55 (t, 111H, OCH(CH₃)C(O)- of PLLA), 1.25 (m, 32H, -CH₂- of DA) 0.86 (t, 3H, -CH₃ of DA). GPC analysis indicated Mₙ = 3099 g g mol⁻¹ and Mₘ/Mₙ = 1.00.

Synthesis of 4 arms polylactide conjugated diacetylene (4PLLA-4DA)

Pentaerythritol (27.2 mg, 0.2 mmol) was used as initiator for ring opening polymerization of L-lactide (2882.8 mg, 20 mmol) in bulk at 120 °C with tin(II) 2-ethylhexanoate catalyst (81.0 mg, 0.2 mmol). At the end of the reaction, the medium was viscous. The product obtained was precipitated in cold diethyl ether and dried under vacuum to obtain 4 arms polylactide (4PLLA) with the yield of 95%. 1H NMR (500 MHz, CDCl₃, ppm):
5.14 (d, J = 7.11 Hz, 44H, -OCH(CH3)C(O)- of PLLA), 4.34 (s, 1H, terminal -
OC(O)CH(CH3)-OH), 3.51 (m, 2H, C(CH2)-O-PLLA), 1.56 (t, 135H, OCH(CH3)C(O)- of
PLLA). \(^1\)H NMR analysis indicated a DP\(_n\) of 22 lactide units per chain. GPC analysis indicated
\(M_n = 19963\ \text{g mol}^{-1}\) and \(M_w/ M_n = 1.21\).

4PLLA and 10,12-pentacosadiynoic acid (149.8 mg, 0.4 mmol) was conjugated as the
same procedure as 4BzD-8PLLA-8DA to obtain 4PLLA-4DA with 87 %yield. \(^1\)H NMR (500
MHz, CDCl\(_3\), ppm): 5.14 (dd, J = 6.89, 13.89 Hz, 32H, -OCH(CH3)C(O)- of PLLA), 4.35
(s, 1H, terminal -OC(O)CH(CH3)-OH), 3.49 (m, 2H, C(CH2)-O-PLLA), 2.58 (s, 2H, -
OC(O)CH2- of DA), 2.22 (s, 4H, -(CH2)C≡C- of DA), 1.48 (t, 131H, OCH(CH3)C(O)- of
PLLA and -CH2- of DA) 0.86 (t, 3H, -CH3 of DA).

59 Synthesis of hyperbranched polylactide conjugated diacetylene (mPEI-PLLA-DA)

Ring opening polymerization of \(\text{_l-lactide}\) (4571.7 mg, 31.7 mmol) was proceeded in
bulk at 120 °C with tin(II) 2-ethylhexanoate catalyst (81.0 mg, 0.2 mmol) by using branched
polyethyleneimine (93.5 mg, 1.6 mmol) as an initiator. The crude product was precipitate in
cold methanol to obtain hyperbranched polylactide (mPEI-PLLA) at 98 %yield. \(^1\)H NMR (500
MHz, CDCl\(_3\), ppm): 5.14 (dd, J = 6.81, 13.89 Hz, 1634H, -OCH(CH3)C(O)- of PLLA), 4.34
(s, 43H, terminal -OC(O)CH(CH3)-OH), 3.72 (dd, J = 8.65, 14.35 Hz, 172H, -NH- and –NH2
of mPEI), 1.54 (m, 5031H, OCH(CH3)C(O)- of PLLA). \(^1\)H NMR spectrum suggested 43
polylactide chains with DP\(_n\) of 19 lactide units per chain on PEI molecule.

10,12-pentacosadiynoic acid (50.0 mg, 0.13 mmol) was conjugated with -OH group of
polylactide as the same procedure as 4BzD-8PLLA-8DA to obtain mPEI-PLLA-DA. \(^1\)H NMR
(500 MHz, CDCl\(_3\), ppm): 5.14 (dd, J = 6.85, 13.89 Hz, 903H, -OCH(CH3)C(O)- of PLLA),
4.34 (s, 43H, terminal -OC(O)CH(CH3)-OH), 3.59 (d, J = 126.48 Hz, 172H, mPEI), 2.58 (t,
86H, -OC(O)CH2- of DA), 2.22 (t, 172H, -(CH2)C≡C- of DA), 1.54 (m, 4214H,
OCH(CH3)C(O)- of PLLA and -CH2- of DA), 0.86 (t, 129H, -CH3 of DA).
Figure S1. 1H NMR of PLLA-DA.
Figure S2. 1H NMR of 4PLLA-4DA.
Figure S3. 1H NMR of mPEI-PLLA-DA.
Figure S4. TOCSY NMR of 4BzD-8PLLA-8DA.
Figure S5. UV-Vis spectra of (a) DA, (b) PLLA-DA, (c) 4PLLA-4DA, and (d) mPEI-PLLA-100 DA.
Figure S6. (a) UV-Vis spectra and (b) Time-resolved development of maximum absorption at 640 nm of kinetics of polymerization.
Figure S7. Temperature dependent Raman spectra of film (a) PDA/PLA, (b) PLLA-PDA/PLA, (c) 4PLLA-4PDA/PLA, (d) 4BzD-8PLLA-8PDA/PLA and (e) mPEI-PLLA-PDA/PLA.
Figure S8. DSC thermogram of film (a) PDA/PLA, (b) PLLA-PDA/PLA, (c) 4PLLA-4PDA/PLA, (d) 4BzD-8PLLA-8PDA/PLA and (e) mPEI-PLLA-PDA/PLA at (A) cooling scan and (B) second heating scan.