Ladder-Like Polysilsesquioxane Dielectrics for Organic Field-Effect Transistor Applications

M. Pei, a,† A. S. Lee, b,† S. S. Hwang b,*, and H. Yang a,*

aDepartment of Applied Organic Materials Engineering, Inha University, Incheon 22212, Korea; bMaterials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02972, Korea

Corresponding Author

*H. Yang (hc yang@inha.ac.kr); S.S. Hwang (ssh wang@kist.re.kr)

†M. P. and A. S. L. contributed equally.
Fig. S1 (a) 1H NMR, (b) FT-IR, and (c) 29Si NMR spectra of LPSQ-TMS series studied in this paper.
Fig. S2 TGA profiles of LPSQ-TMS series studied in this work.

Fig. S3 θ-based γ values of LPSQ-TMS treated and untreated SiO₂ dielectrics.
Fig. S4 AFM topography of 20 nm thick pentacene film on the LPMASQ82-TMS treated SiO$_2$ surface.
Fig. S5 (a–c) 1D out-of-plane X-ray diffraction profiles extracted along the Q_z axis from the 2D GIXD patterns of (a) LPMASQ82-, (b) LPPrSQ82-, (c) LPNSQ-TMS treated SiO$_2$ systems. (d) Variations in D and μ_{FET} of 50 nm thick pentacene films on the LPSQ-treated SiO$_2$ dielectrics.
Fig. S6 Typical I_D-V_G transfer and I_G-V_G gate leakage curves of pentacene OFETs on the treated SiO$_2$ dielectrics including: (a) LPPSQ-, (b) LPMASQ82-, (c) LPMASQ64-, (d) LPMSQ-, (e) LPPrSQ-, (f) LPPrSQ82-, (g) LPFSQ-, and (h) LPNSQ-TMS layers.
Fig. S7 I_D-V_G transfer curves of 50 nm pentacene OFETs on the (a) untreated and (b–d) LPSQ-TMS treated SiO$_2$ dielectrics including: (b) LPPSQ-, (c) LPMASQ82-, and (d) LPPrSQ82-, under a sustained gate bias of $V_G = -60$ V as a function of stress time (t).
Fig. S8 FT-IR spectra of LPMASQ82-TMS/PMFM (95/5) before and after thermal curing.

Fig. S9 (a) Current density and (b) C_i profile of 500 nm thick LPMASQ82-TMS film with ε_r of 2.77.
Fig. S10 Chemical structure of poly(melamine-co-formaldehyde), acrylated.