Supporting information

Inverting Substitution Patterns on Amphiphilic Cyclodextrins
Induces Unprecedented Formation of Hexagonal Columnar Superstructures

[a]Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4 Canada

[b]Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6 Canada.

*Email: vancew@sfu.ca; ccling@ucalgary.ca

Table of Contents

A: NMR spectra of synthesized compounds ... 3

Figure S1. ¹H NMR spectra 400 MHz of compound 8 in CDCl₃ .. 3
Figure S2. ¹³C DEPT-Q NMR spectra 400 MHz of compound 8 in CDCl₃ 3
Figure S3. ¹H NMR spectra 400 MHz of compound 13 in CDCl₃ 4
Figure S4. ¹H NMR spectra 400 MHz of compound 14 in CDCl₃ 4
Figure S5. ¹H NMR spectra 400 MHz of compound 9 in CDCl₃ 5
Figure S6. ¹³C DEPT-Q NMR spectra 400 MHz of compound 9 in CDCl₃ 5
Figure S7. ¹H ¹H 2D COSY NMR spectra 9 400 MHz in CDCl₃ 6
Figure S8. ¹H ¹³C 2D HSQC 400 MHz NMR spectra of 9 400 MHZ in CDCl₃ 6
Figure S9. ¹H NMR spectra 400 MHz of 10 in CDCl₃ .. 7
Figure S10. ¹³C DEPT-Q NMR spectra 101 MHz of 10 in CDCl₃ 7
Figure S11. ¹H ¹H 2D COSY NMR spectra of 10 in CDCl₃ ... 8
Figure S12. ¹H ¹³C 2D HSQC 400 MHz NMR spectra of 10 in CDCl₃ 8
Figure S13. ¹H NMR spectra 400 MHz of compound 4 in CDCl₃ 9
Figure S14. 13C DEPT-Q NMR spectra 101 MHz of compound 4 in CDCl$_3$.. 9
Figure S15. 1H 1H 2D COSY NMR spectra of compound 4 in CDCl$_3$.. 10
Figure S16. 1H 13C 2D HSQC 400 MHz NMR spectra of compound 4 in CDCl$_3$ 10
Figure S17. 1H NMR spectra 400 MHz of compound 5 in CDCl$_3$.. 11
Figure S18. 13C DEPT-Q NMR spectra 101 MHz of compound 5 in CDCl$_3$ 11
Figure S19. 1H 1H 2D COSY NMR spectra of compound 5 in CDCl$_3$.. 12
Figure S20. 1H 13C 2D HSQC 400 MHz NMR spectra of compound 5 in CDCl$_3$ 12

B: Thermogravimetric Analysis ... 13
 Figure S21. Thermogravimetric analysis of compound 4 ... 13
 Figure S22. Thermogravimetric analysis of compound 5 ... 13

C: X-ray Diffraction Analysis .. 14
 Table S1. XRD data for the compounds 4 and 5 .. 14
 Figure S23. XRD spectra of β-CD-4 at 25°C ... 15
 Figure S24. XRD spectra of β-CD-4 at 100°C ... 15
 Figure S25. XRD spectra of β-CD-4 at 140°C ... 16
 Figure S26. XRD spectra of β-CD-5 at 25°C ... 16
 Figure S27. XRD spectra of β-CD-5 at 100°C ... 17
 Figure S28. XRD spectra of β-CD-5 at 275°C ... 17

D: Differential Scanning Calorimetry Analysis .. 18
 Table S2 Phase transitions of β-CD-4 and 5 recorded by DSC. .. 18
 Figure S30. Differential scanning calorimetry thermogram of β-CD-4 18
 Figure S31. Differential scanning calorimetry thermogram of β-CD-5 19

E: Polarized Optical Microscope Pictures .. 20
 Polarized optical microscope image of β-CD-4 .. 20
 Polarized optical microscope image of β-CD-5 .. 22

F: Computational studies .. 23
 Figure S37. Structure of β-CD-4 before (a) and after (b) optimization 23
 Figure S38. Structure of β-CD-5 before (a) and after (b) optimization 24
A: NMR spectra of synthesized compounds

Figure S1. 1H NMR spectra 400 MHz of 1-azidoctadecane (8) in CDCl$_3$

Figure S2. 13C DEPT-Q NMR spectra 400 MHz of 1-azidoctadecane (8) in CDCl$_3$
Figure S3. 1H NMR spectra 400 MHz of 2-(2-propargylethoxy)ethyl acetate (13) in CDCl$_3$

Figure S4. 1H NMR spectra 400 MHz of (2-(2-propargylethoxy)ethoxy)ethyl acetate (14) in CDCl$_3$
Figure S5. 1H NMR spectra 400 MHz of per-2,3-di-O-(1-octadecyl-1H-1,2,3-triazol-4-yl)methyl-6-O-mesy1-β-cyclodextrin (9) in CDCl$_3$.

Figure S6. 13C DEPT-Q NMR 101 MHz spectra of per-2,3-di-O-(1-octadecyl-1H-1,2,3-triazol-4-yl)methyl-6-O-mesy1-β-cyclodextrin (9) in CDCl$_3$.
Figure S7. 1H 1H 2D COSY NMR spectra of per-2,3-di-O-(1-octadecyl-^{1}H-$1,2,3$-triazol-4-yl)methyl-6-O-mesyl-β-cyclodextrin (9) 400 MHZ in CDCl$_3$.

Figure S8. 1H 13C 2D HSQC 400 MHz NMR spectra of per-2,3-di-O-(1-octadecyl-^{1}H-$1,2,3$-triazol-4-yl)methyl-6-O-mesyl-β-cyclodextrin (9) 400 MHZ in CDCl$_3$.
Figure S9. 1H NMR spectra 400 MHz of per-6-azido-6-deoxy-2,3-di-O-(1-octadecyl-1H-1,2,3-triazol-4-yl)methyl-β-cyclodextrin (10) in CDCl$_3$.

Figure S10. 13C DEPT-Q NMR spectra 101 MHz of per-6-azido-6-deoxy-2,3-di-O-(1-octadecyl-1H-1,2,3-triazol-4-yl)methyl-β-cyclodextrin (10) in CDCl$_3$.
Figure S11. 1H 1H 2D COSY NMR spectra of per-6-azido-6-deoxy-2,3-di-O-(1-octadecyl-1H-1,2,3-triazol-4-yl)methyl-β-cyclodextrin (10) in CDCl$_3$.

Figure S12. 1H 13C 2D HSQC 400 MHz NMR spectra of per-6-azido-6-deoxy-2,3-di-O-(1-octadecyl-1H-1,2,3-triazol-4-yl)methyl-β-cyclodextrin (10) in CDCl$_3$.
Figure S13. 1H NMR spectra 400 MHz of compound (4) in CDCl$_3$.

Figure S14. 13C NMR DEPT-Q spectra 101 MHz of compound (4) in CDCl$_3$.

Figure S15. ^1H ^1H 2D COSY NMR spectra of compound (4) in CDCl$_3$

Figure S16. ^1H ^{13}C 2D HSQC 400 MHz NMR spectra of compound (4) in CDCl$_3$
Figure S17. 1H NMR spectra 400 MHz of compound (5) in CDCl$_3$.

Figure S18. 13C DEPT-Q NMR spectra 101 MHz of compound (4) in CDCl$_3$.
Figure S19. 1H 1H 2D COSY NMR spectra of compound (5) in CDCl$_3$

Figure S20. 1H 13C 2D HSQC 400 MHz NMR spectra of compound (5) in CDCl$_3$
B: Thermogravimetric Analysis

Figure S21. Thermogravimetric analysis of compound 4 (2°C/min)

Figure S22. Thermogravimetric analysis of compound 5 (10°C/min)
C: X-ray Diffraction Analysis

Table S1. XRD data for the compounds studied, including comparison of experimentally observed d-spacings and calculated values based on \[\frac{1}{d^2} = \frac{4(h^2+k^2+l^2)}{a^2} + \frac{l^2}{c^2} \]. PLC-M-14 is compound 4; PLC-M-19 is compound 5.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Temperature (°C)</th>
<th>Phase (a/Å)</th>
<th>d-spacing, observed (Å)</th>
<th>d-spacing, calculated (Å)</th>
<th>Miller indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC-M-14</td>
<td>25</td>
<td>Col₆ (66.6)</td>
<td>57.7</td>
<td>57.7</td>
<td>d₁₀₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32.3</td>
<td>33.3</td>
<td>d₁₁₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28.4</td>
<td>28.8</td>
<td>d₂₀₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20.9</td>
<td>21.8</td>
<td>d₁₁₀</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Col₆ (61.7)</td>
<td>53.5</td>
<td>53.5</td>
<td>d₁₀₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30.5</td>
<td>30.9</td>
<td>d₁₁₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.8</td>
<td>26.7</td>
<td>d₂₀₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20.2</td>
<td>20.2</td>
<td>d₂₁₀</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>isotropic</td>
<td>48.7</td>
<td>--</td>
<td>alkyl halo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29.5</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>PLC-M-19</td>
<td>25</td>
<td>Col₆ (62.5)</td>
<td>54.1</td>
<td>54.1</td>
<td>d₁₀₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30.7</td>
<td>31.3</td>
<td>d₁₁₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.3</td>
<td>27.1</td>
<td>d₂₀₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20.0</td>
<td>20.5</td>
<td>d₂₁₀</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Col₆ (58.9)</td>
<td>51.0</td>
<td>51.0</td>
<td>d₁₀₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29.3</td>
<td>29.4</td>
<td>d₁₁₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.9</td>
<td>25.5</td>
<td>d₂₀₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.3</td>
<td>19.3</td>
<td>d₂₁₀</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>isotropic</td>
<td>48.2</td>
<td>--</td>
<td>alkyl halo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31.4</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
Figure S23. XRD spectra of β-CD-4 at 25°C

Figure S24. XRD spectra of β-CD-4 at 100°C
Figure S25. XRD spectra of β-CD-4 at 140°C

Figure S26. XRD spectra of β-CD-5 at 25°C
Figure S27. XRD spectra of β-CD-5 at 100°C

Figure S28. XRD spectra of β-CD-5 at 275°C
D: Differential Scanning Calorimetry Analysis

Table S2. Phase transitions of β-CD-4 and 5 recorded by DSC

<table>
<thead>
<tr>
<th>Compound</th>
<th>1st Phase Transition, heating/cooling</th>
<th>2nd Phase Transition, heating/cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC-M-14</td>
<td>51.0 °C (30.6 J/g)/ 38.1 °C (28.0 J/g)</td>
<td>141.9 °C (0.72 J/g)/ 138.9 °C (0.77 J/g)</td>
</tr>
<tr>
<td>PLC-M-19</td>
<td>48.4 °C (26.8 J/g)/ 36.1 °C (23.5 J/g)</td>
<td>126.8 °C (0.34 J/g)/ 123.9 °C (0.20 J/g)</td>
</tr>
</tbody>
</table>

Figure S29. Differential scanning calorimetry thermogram of β-CD-4 (scan rate 10°C/min, with one minute isothermal at the end points of the temperature range).
Figure S30. Differential scanning calorimetry thermogram of β-CD-5 (scan rate 10°C/min, with one minute isothermal at the end points of the temperature range).
E: Polarized Optical Microscope Pictures

Figure S31. Polarized optical microscope image of β-CD-4.

Figure S32. Polarized optical microscope image of β-CD-4.
Figure S33. Polarized optical microscope image of β-CD-5.

Figure S34. Polarized optical microscope image of β-CD-5.
Figure S35. Polarized optical microscope image of β-CD-5.

Figure S36. Polarized optical microscope image of β-CD-5 after clearing point.
Figure S37. Structure of β-CD-4 before (a) and after (b) optimization.
Figure S38. Structure of β-CD-5 before (a) and after (b) optimization.