Electronic Supplementary Information

Towards the outstanding dielectric consumption derived from designing one-dimensional mesoporous MoO$_2$/C hybrid heteronanowires.

Yan Chenga, Wei Mengb, *Zhaoyong Lia, Huanqin Zhaoa, Jieming Caoa, Youwei Duc, Guangbin Jia, *

aCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, P. R. China.

bSchool of Science, China Pharmaceutical University, Nanjing 211198, P. R. China

cNational Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China.

*E-mail: gbji@nuaa.edu.cn
Fig. S1. EDS spectrum and element content of MoO\textsubscript{2}/C nanowires in the inset of panel.

Fig. S2. (a) SEM and (b) TEM images of S-800.
Fig. S3. XRD pattern of S-800.

Fig. S4. Reflection loss spectrum and reflection loss curve of S4, S5 and S6.
Fig. S5. Reflection loss spectrum and reflection loss curve under 2mm thickness for S-800 at 25 wt% filling ratio.

Fig. S6. 3D representation of the RL performance of commercial MoO$_2$ with 25 wt% filling ratio.

Fig. S7. Electromagnetic parameters of the samples with higher filling ratio of S4, S5, S6.
Fig. S8. Cole-Cole curve of S3.

Fig. S9. The impedance matching values and attenuation constants of S4, S5 and S6.

Table S1. Specific surface areas and pore volumes of S-700 and S-800.

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET}</th>
<th>S_{Langmuir}</th>
<th>V_{pore}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-700</td>
<td>109.8</td>
<td>222.8</td>
<td>0.159</td>
</tr>
<tr>
<td>S-800</td>
<td>41.2</td>
<td>132.5</td>
<td>0.156</td>
</tr>
</tbody>
</table>