Electronic Supplementary Information (ESI) for

“Ultralow Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Poly(l-lactide)/Multi-Walled Carbon Nanotubes Nanocomposites with Electrically Conductive Segregated networks”

Kai Zhang, a Gen-Hui Li, a La-Mei Feng, a Ning Wang, b Kai Sun, c
Jiang Guo, c Kai-Xin Yu, a Jian-Bing Zeng, a Tingxi Li, d, * Zhanhu Guo, c, * and Ming Wang a, *

a Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China

b Engineered Multifunctional Composites (EMC) Nanotechnology LLC, Knoxville, TN, 37934, USA

c Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA

d College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

*Corresponding Author
E-mail address: mwang@swu.edu.cn (M. Wang), lix@sdust.edu.cn (T. Li)
nanomaterials2000@gmail.com or zguo10@utk.edu (Z. Guo).

1. Transcrystals in S-PLLA/MWCNTs composites

S-1
The cryo-fractured surface of the S-PLLA/MWCNTs composites was etched in a water-methanol (1/2 v/v) solution containing 0.025 mol/L sodium hydroxide to remove the amorphous regions of the PLLA matrix, and finally coated with a layer of platinum in a vacuum chamber before the SEM observation. Fig. S1 shows the crystalline morphology of the S-PLLA/MWCNTs composites with 0.6 vol. % MWCNTs. It can be found that the transcristalline layers and spherulites range in the H-PLLA phase. The transcrystals which was formed by the nucleating effect of MWCNTs were surrounded with the L-PLANT phase. The formation of the transcrystals was thought to enhance the Young’s modulus and tensile strength of S-PLLA/MWCNTs composites.

Fig. S1 Crystalline morphology of the S-PLLA/MWCNTs composites with 0.6 vol. % MWCNTs.

2. Nonisothermal crystallization behavior of the S-PLLA/MWCNTs composites
The nonisothermal crystallization behavior of the samples was performed by a differential scanning calorimeter (NETZSCH DSC-214) in a dry nitrogen atmosphere. For each measurement, about 5 mg sample was placed in an aluminum pan, which was first heated from 25 to 190 °C at a heating rate of 10 °C/min and held for 5 min to remove thermal history, then cooled down to 25 °C at a cooling rate of 10 °C/min, and finally reheated to 190 °C at a heating rate of 10 °C/min. The degree of crystallinity (X_c) was evaluated according to the Eq. S1 from the second heating curve.\(^{S1}\)

$$X_c = \frac{\Delta H_m - \Delta H_c}{w_f \Delta H_m^o}$$

where ΔH_m, ΔH_c, w_f and ΔH_m^o were the measured enthalpies of melting, the measured enthalpies of cold crystallization, the weight percent of PLLA matrix and the melting enthalpies of 100 % crystalline PLLA of 93.7 J/g,\(^{S2}\) respectively.

Fig. S2 shows the non-isothermal crystallization of the L-PLANT, R-PLLA/MWCNTs and S-PLLA/MWCNTs composites. The L-PLANT composites have only one thermal transition upon heating, i.e. glass transition at ~ 60 °C, indicating that no crystallization for L-PLLA happens during the processing. However, both the R-PLLA/MWCNTs and S-PLLA/MWCNTs composites exhibit multiple transitions upon heating: a glass transition temperature (T_g) of ~ 60 °C, a cold crystallization peak (P_{cc}) of ~115 °C and a melting peak (P_m) of ~170 °C. The crystallinity of the composites was also calculated and showed in Fig. S2b and c. The crystallinity of all the tested S-PLLA/MWCNTs composites was less than 7 %, while the tested R-PLLA/MWCNTs composites had more than 13 % crystallinity. The reasons are that the MWCNTs show high nucleating effect...
on H-PLLA crystallization but no nucleating effect on L-PLLA crystallization (Fig S2a). The nucleating effect on H-PLLA crystallization is also retarded by the confined distribution of MWCNTs in L-PLLA phase for the S-PLLA/MWCNTs composites. Furthermore, the crystallinity of the R-PLLA/MWCNTs composites increases at low MWCNTs loadings (0, 0.2 and 0.6 vol. %) and then decrease at high MWCNTs loadings (0.8 vol.%). The results are attributed to the crystallization confinement probably happening at the higher concentration of MWCNTs.

![DSC and heating curves](image)

Fig. S2 DSC and heating curves of the L-PLANT (a), R-PLLA/MWCNTs (b) and S-PLLA/MWCNTs (c) composites with different MWCNTs loadings.

References
