Supplementary Information

Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes

Sudhir Kumar^{a,b}, Chih-Chia An^a, Snehasis Sahoo,^a R. Griniene^c, D. Volyniuk^c, Juozas V. Grazulevicius^c, Saulius Grigalevicius^{c,*}, Jwo-Huei Jou^{a,*}

^aDepartment of Materials Science and Engineering, National Tsing-Hua University, No.101, Kung-Fu Rd. Hsin-Chu 30013 Taiwan, R.O.C.

^bPresent address: Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Web 1, 8093 Zürich, Switzerland.

^cDepartment of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu plentas 19, LT50254, Kaunas, Lithuania.

Contents

Figure S1. H ¹ NMR spectra of HTMs, (a) NPVCz, (b) DNPVCz, and (c) DPPVCz3
Figure S2. IR spectra of HTMs, (a) NPVCz, (b) DNPVCz, and (c) DPPVCz
Figure S3. Mass-spectrum of NPVCz compound
Figure S4. Mass-spectrum of DNPVCz compound7
Figure S5. Mass-spectrum of DPPVCz compound
Figure S6. PL spectra of NPVCz, DPPVCz and DNPVCz, in THF solution at 77 K9
Figure S7. TGA plots of NPVCz, DNPVCz, and DPPVCz
Figure S8. DSC curves of (a) NPVCz, (b) DNPVCz, and (c) DPPVCz11
Figure S9. Double-logarithmic representation of transient photocurrents curves of the newly
synthesized HTMs, (a) NPVCz, (b) DNPVCz, and (c) DPPVCz, and inset show the TOF
transient curves
Figure S10. Effect of the HTMs, NPB, NPVCz, DNPVCz, and DPPVCz, on the EL spectra of
the fluorescent green OLED devices

Figure S11. Effects of typical HTM, NPB, on (a) current density and luminance, (b) current efficiency- luminance-power efficiency, and (c) EL spectra of phosphorescent OLED devices..14 **Figure S12.** Normalized luminance as a function of operational lifetime of solution-processed HTLs, NPVCz, DNPVCz, DPPVCz, and conventional NPB, based phosphorescent OLEDs.15

Figure S1. H¹ NMR spectra of HTMs, (a) NPVCz, (b) DNPVCz, and (c) DPPVCz.

Figure S2. IR spectra of HTMs, (a) NPVCz, (b) DNPVCz, and (c) DPPVCz.

Figure S3. Mass-spectrum of NPVCz compound.

Figure S4. Mass-spectrum of DNPVCz compound.

Figure S5. Mass-spectrum of DPPVCz compound.

Figure S6. PL spectra of NPVCz, DPPVCz and DNPVCz, in THF solution at 77 K.

Figure S7. TGA plots of NPVCz, DNPVCz, and DPPVCz.

Figure S8. DSC curves of (a) NPVCz, (b) DNPVCz, and (c) DPPVCz.

Figure S9. Double-logarithmic representation of transient photocurrents curves of the newly synthesized HTMs, (a) NPVCz, (b) DNPVCz, and (c) DPPVCz, and inset show the TOF transient curves.

Figure S10. Effect of the HTMs, NPB, NPVCz, DNPVCz, and DPPVCz, on the EL spectra of fluorescent green OLED devices.

Figure S11. Effects of typical HTM, NPB, on (a) current density and luminance, (b) current efficiency- luminance-power efficiency, and (c) EL spectra of phosphorescent OLED devices.

Figure S12. Normalized luminance as a function of operational lifetime of solution-processed HTLs, NPVCz, DNPVCz, DPPVCz, and conventional NPB, based phosphorescent OLEDs.