Supporting Information

Directly coupled dual emitting core based molecular design of thermally activated delayed fluorescent emitters

Hee-Jun Park, Si Hyun Han, Jun Yeob Lee*

H.-J. Park, S. H. Han, Prof. J. Y. Lee
School of Chemical Engineering, Sungkyunkwan University
2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746, Korea
*E-mail: leej17@skku.edu

Keywords: thermally activated delayed fluorescence-dopant engineering-quantum efficiency-electroluminescence
Table of Contents

- Cyclic voltammograms of two emitters .. 3
- Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves 4
- Energy level diagram and chemical structure of materials ... 5
- Power and current efficiencies for two emitters .. 6
- PL decay curves of mCBPTrz-1 and mCBPTrz-2 measured at various temperatures 7
- The PL emission spectra at prompt and delayed time .. 8
- 1H and 13C NMR spectra ... 9
- High resolution mass spectrometry (HRMS) data of two emitters 19
- Elemental analysis data of mCBPTrz-1 and mCBPTrz-2 .. 20
- Equations for the calculation of rate constants ... 21
Figure S1. Cyclic voltammograms of mCBPTrz-1 and mCBPTrz-2.
Figure S2. TGA and DSC curves of mCBPTrz-1 and mCBPTrz-2.
Figure S3. Energy level diagram and chemical structure of materials.
Figure S4. Power and current efficiencies (a), (b) for mCBPTrz-1 and (c), (d) for mCBPTrz-2.
Figure S5. PL decay curves of mCBPTrz-1 and mCBPTrz-2 measured at various temperatures.
Figure S6. The PL emission spectra at prompt and delayed time.

(Left: mCBPTrz-1, right: mCBPTrz-2)
Figure S7. 1H and 13C NMR spectra of A1.
Figure S8. 1H and 13C NMR spectra of A2.
Figure S9. 1H and 13C NMR spectra of A3.
Figure S10. 1H NMR spectrum of A4.
Figure S11. 1H and 13C NMR spectra of B1.
Figure S12. 1H and 13C NMR spectra of B2.
Figure S13. 1H and 13C NMR spectra of B3.
Figure S14. 1H NMR spectrum of B4.
Figure S15. 1H NMR spectrum of mCBPTrz-1.
Figure S16. 1H NMR spectrum of mCBPTrz-2.
Figure S17. High resolution mass spectrometry (HRMS) data of mCBPTrz-1 and mCBPTrz-2.
Figure S18. Elemental analysis data of mCBPTrz-1 and mCBPTrz-2.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Nitrogen</th>
<th>Carbon</th>
<th>Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>mCBP-Trz1</td>
<td>11.8677</td>
<td>83.7546</td>
<td>4.3393</td>
</tr>
<tr>
<td>mCBP-Trz2</td>
<td>9.5487</td>
<td>84.0477</td>
<td>6.2947</td>
</tr>
</tbody>
</table>
\[\tau_p = 1/k_p \]
\[\tau_d = 1/k_d \]
\[k_{ISC} = (1 - \Phi_F) \times k_p \]
\[k_{RISC} = (k_p k_d / k_{ISC}) \times (\Phi_{TADF} / \Phi_F) \]
\[k_{rS} = k_p \Phi_F \]
\[k_{nrT} = k_d - k_{RISC} \Phi_F \]

Equations for the calculation of rate constants