Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Conductive Silver Coating with Ultra-low Silver Consumption on Polyimide Film via a Mild Surface Ion Exchange Self-metallization Method

Yanqing Wang^a, Jun Ding^{a,*}, Ning Li^{b,*}, Liping Ding^{c,*}, Deyu Li^b

a Department of Materials Science & Engineering, National University of Singapore, 119260,

Singapore

b School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001,

China

c School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China

Table S1 The Ag consumption and sheet resistance of silver layer on polyimide film fabricated

Methods	Ag(wt%)	$\boldsymbol{R} \square (\Omega/\mathrm{sq})$
Inverse CVD ¹	10	NC
Single-stage self-metallization ²	8	NC
Surface ion exchange self-metallization ³	1.22	NC
OIR	0.56	261±1.3

by different methods

Note: NC: non-conductive

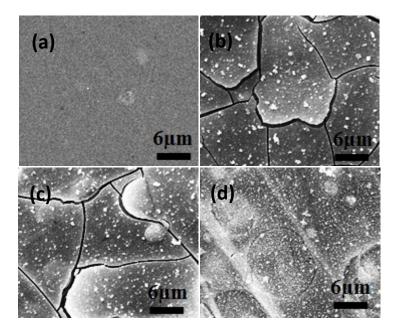
The calculation process of the Ag consumption of the silver layer by surface ion exchange self-metallization³ and OIR method

I Surface ion exchange self-metallization method³

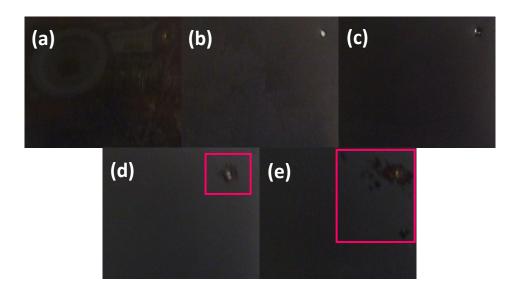
As reported in reference 3, we choose \mathbf{R}_{\Box} value when the Ag loading content C_I is 0.4µmol/cm². The molar mass of Ag M is 107.87g/mol. The thickness of polyimide film d_I is 50µm, the area of polyimide film S_I is set as 1cm² and the density of polyimide film ρ is set as 1.4g/cm³. The silver layer was fabricated on upside and downside of polyimide film at the same time. So the Ag consumption of the silver layer ω_I by surface ion exchange self-metallization method³ can be calculated as follows:

$$\omega_I = \frac{2C_I S_I M}{2C_I S_I M + \rho S_I d_I} \times 100 wt\%$$

$$\omega_{I} = \frac{2 \times 0.4 \times 10^{-6} \times 1 \times 107.87}{2 \times 0.4 \times 10^{-6} \times 1 \times 107.87 + 1.4 \times 1 \times 50 \times 10^{-4}} \times 100wt\% = 1.22wt\%$$


II OIR method

The Ag loading content C_{II} is 0.914µmol/cm². The molar mass of Ag M is 107.87g/mol. The


thickness of polyimide film d_{II} is 125µm, the area of polyimide film S_{II} is set as 1cm² and the density of polyimide film ρ is set as 1.4g/cm³. The silver layer was fabricated on the bright side of polyimide film. So the Ag consumption of the silver layer ω_{II} by OIR method can be calculated as follows:

$$\omega_{II} = \frac{2C_{II}S_{II}M}{2C_{II}S_{II}M + \rho S_{II}d_{II}} \times 100wt\%$$

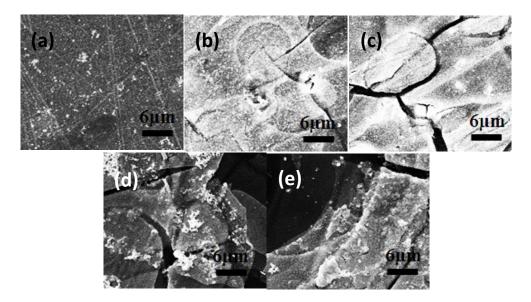

 $\omega_{II} = \frac{0.914 \times 10^{-6} \times 1 \times 107.87}{0.914 \times 10^{-6} \times 1 \times 107.87 + 1.4 \times 1 \times 125 \times 10^{-4}} \times 100wt\% = 0.56wt\%$

Figure S1 SEM images of progress of fabricating conductive silver coating by OIR method on polyimide film (a) after chemical degreasing process (b) after O process (c) after I process (d) after R process.

Figure S2 Digital photographs of manganese oxide modified layer under different t_0 (a) 1 h (b) 3 h (c) 5 h (d) 7 h (e) 9 h

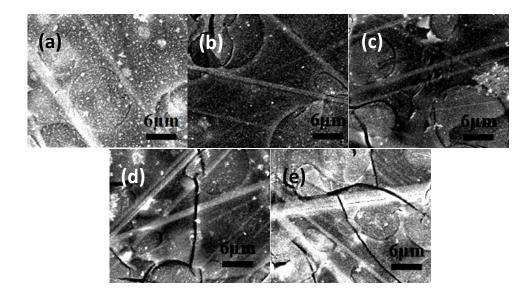


Figure S3 The influence of t_0 on the morphology of silver coating (a) 1 h (b) 3 h (c) 5 h (d)7 h (e) 9 h. Note: t_1 =30min, t_R =1h.

	coating.				
<i>t</i> ₀ (h)	<i>d</i> (nm)	$\boldsymbol{R}\Box(\Omega/\mathrm{sq})$	$\rho(\mu\Omega \cdot cm)$		
1	30±3	NC	NC		
3	80 ± 8	448.3±2.2	3586.4±53.8		
5	100±10	446.8±2.2	4468±67.0		
7	110±11	763.9±3.8	8402.9±126.0		
9	90±9	NUC	PC		

Table S2 The influence of t_0 on the thickness d, the sheet resistance $R_{_{\square}}$, resistivity ρ of silver

Note: $\rho = \mathbf{R}_{\Box} \times \mathbf{d}$, NUC: Non-uniform conductive, PC: partly conductive

Figure S4 The influence of t_{I} on the morphology of silver coating (a) 15min (b) 30min (c) 45min (d)60min (e) 75min. Note: t_{R} =1h.

REFERENCES

- 1 R. E. Southward and D.W. Thompson, Adv Mater, 1999, 12, 1043.
- 2 R. E. Southward and D. W. Thompson, Chem Mater. 2004, 16, 1277.
- 3 G Cui, D Wu, Y Zhao, W Liu and Z Wu, Acta Mater, 2013, 61, 4080.