Supporting Information

Temperature Regulation Growth of Au Nanocrystals: from Concave Trisoctahedron to Dendritic Structures and Their Ultrasensitive SERS-based Detection of Lindane

Xia Zhoua,b,c, Qian Zhaoa,b, Guangqiang Liu a*, Hongwen Zhanga, Yue Lia, and Weiping Caia,b*

aKey Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, PR China
bUniversity of Science and Technology of China, Hefei 230026, PR China
cAnhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, PR China

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{FigureS1.png}
\caption{The XRD patterns of the products obtained by addition of Au seed solution with 0.05mL at different reaction temperatures.}
\end{figure}

* To whom all correspondence should be addressed
E-mail: liugg@issp.ac.cn, wpcai@issp.ac.cn; Tel: +86-551-65592747; Fax: +86-551-65591434
Figure S2. Optical absorbance spectra of Au colloidal solutions obtained by addition of different Au seeds solution amounts (0.10 mL, 0.05 mL, 0.025 mL, 0.01 mL) at 25°C, respectively.
Figure S3. (a–d): SEM images of products obtained by addition of Au seeds solution amounts 0.10 mL, 0.05 mL, 0.025 mL and 0.01 mL, respectively, at 25°C. (e): The size distribution histograms of the particles. The frames from top to bottom: correspond to the samples in panels a–d, respectively.
Figure S4. The SEM images of the products obtained by addition of Au seeds solution with 0.05mL at different reaction temperatures. (a): 40 °C, (b): 60 °C, (c): 80 °C, (d): 100 °C.
Figure S5. The SEM images of the Au nanocrystals obtained at 20°C by addition of Au seeds solution amounts (a): 0.10 mL, (b): 0.05mL, (c): 0.025mL and (d): 0.01 mL.
Figure S6. The SEM images of the Au nanocrystals obtained at 10°C by addition of Au seeds solution amounts (a): 0.10 mL, (b): 0.05mL, (c): 0.025mL and (d): 0.01 mL.
Figure S7. The SEM images of the Au nanocrystals obtained at 5°C by addition of Au seeds solution amounts (a): 0.10 mL, (b): 0.05mL, (c): 0.025mL and (d): 0.01 mL.
Figure S8. SEM images of the films built of the Au nanocrystals obtained by addition of 0.05 mL seeds solution at different reaction temperatures. (a): 25°C, (b): 20°C, (c): 10°C, (d): 5°C.
Figure S9. The Raman spectra from the 20 random spots on the films built of the nanocrystals obtained at (a) 25°C, (b) 20°C, (c) 10°C, (d) 5°C, after soaking in the solution with 10⁻⁶ M in lindane concentration. (excited at 785nm)
Figure S10. The intensity of the main peak at 345 cm$^{-1}$ from each spots on the Au nanocrystals-built films. The data in (a-d) are from (a), (b), (c) and (d) in Figure S10, respectively.
Figure S11. The SEM images of the Au concave trisoctahedral nanocrystals-built films with (a) 200 nm, (b) 500 nm and (c) 800 nm in thickness. (d): The Raman spectra of the lindane molecules on these films after soaking in the solution with 10^{-6}M in lindane concentration and drying. (excited at 785 nm).
Figure S12. The Raman spectra of the lindane molecules on the Au concave trisoctahedral nanocrystals-built film after soaking in the lindane solution with 10^{-6}M, excited at different wavelengths. Curve (I): 785 nm; Curve (II): 633 nm; Curve (III): 532 nm.
Figure S13. Raman spectra of the lindane molecules by dropping (a): 20μL lindane solution (10^{-5} M) on the films built of the Au nanocrystals obtained at different reaction temperatures and (b): 50μL lindane solution (0.1M) on Si wafer, and drying.