Supporting Information

Controlled Synthesis of Sponge-like Porous Au-Ag Alloy Nanocubes for Surface-Enhanced Raman Scattering Property

Tao Zhang,ab Fei Zhou, a Lifeng Hang, a Yiqiang Sun,ab Dilong Liu, a Huilin Li,ab Guangqiang Liu,a Xianjun Lyu,d Cuncheng Li,c Weiping Cai,a and Yue Li*a

a Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
b University of Science and Technology of China, Hefei, 230026, P. R. China.
c Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China.
d College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China

*Email - yueli@issp.ac.cn

Synthesis of Monodisperse Au@Ag Nanorods

The Au@Ag nanorods (NRs) were synthesized by a previous method developed by our group.57 For a typical synthesis of Au@Ag NRs with aspect ratio of 2.3, 0.015 mL of 1 M HAuCl₄ aqueous solution, 1.2 mL of PDDA and 0.057 mL of 2 M AgNO₃ aqueous solution were introduced into 58.8 mL of EG solution in a brown glass vial.
The mixture solution was vigorously stirred for about 1 min at room temperature and ambient conditions. The final concentrations of [AuCl₄]⁻ ions, AgNO₃, and PDDA were 0.25, 1.9, and 25 mM, respectively. The as-prepared mixture solution was subsequently reacted at 200 °C for 60 h in air in an oil bath. The final product was collected by centrifugation at 14 500 rpm and washed repeatedly with pure water for 2 times. The Au@Ag NRs were redispersed in 1 mL water for further use after centrifugation.

Synthesis of Au@Ag@SiO₂ NRs

Typically, 0.3 mL of FSDNA (5 mg/mL) and 0.045 mL of MPY (1 × 10⁻⁵ M) were dropped into 0.04 mL of the Au@Ag NRs aqueous solution. The mixture was vigorously shaken for 10 s and undisturbed for another 45 min. After centrifugation, the products were mixed with 0.2 mL of ethyl alcohol, 0.06 mL of TEOS (1 vol % in ethyl alcohol), and 0.014 mL of NH₃·H₂O under stirring. After 6 h, Au@Ag@SiO₂ NRs were collected by centrifugation and washed with ethanol and water for 3 times, respectively.

Synthesis of Sponge-like Au-Ag alloy NRs

The above Au@Ag@SiO₂ NRs were dried in vacuum and annealed in a tube furnace at 700 °C in nitrogen for 2 h, forming fully alloyed Au-Ag@SiO₂ NRs. After cooling down to room temperature, the products were sonicated and redispersed in 20 mL of 0.1 M NaOH at 70 °C for 3 h. The Au-Ag alloy NRs with an ultrathin silica shell were obtained. Then, sponge-like Au-Ag alloy NRs were fabricated through chemical dealloying, which exposed the solid Au-Ag alloy NRs to 2 M HNO₃ at room temperature.

Synthesis of Sponge-like Au-Ag Alloy Nanospheres (NSs)
The Au@Ag NSs were synthesized by a slightly modified method. The sponge-like Au-Ag alloy NSs were fabricated following the same method with NCs. The size of sponge-like Au-Ag alloy NSs was ca. 50 nm.

Fig. S1 XRD pattern of sponge-like Au-Ag alloy NCs.

Fig. S2 EDS for fully alloyed sponge-like Au-Ag NCs on the copper grid. The percentage of Au and Ag was 57.5% and 42.5%, respectively.
Fig. S3 Typical XPS spectra of Au and Ag in the sponge-like Au-Ag alloy NCs.

Fig. S4 TEM images of sponge-like Au-Ag alloy NSs. The percentage of Au and Ag was 56.9% and 43.1%, respectively.

Fig. S5 Raman spectra on the sponge-like Au-Ag alloy NSs with different concentrations of 10^{-6} M to 10^{-9} M 4-ATP.
Fig. S6 (a) Raman signal obtained by dropping 10 μl 4-ATP ethanol solution (10^{-7} M) on sponge-like Au-Ag alloy NCs substrate. (b) Normal Raman signal of 10 μl of 10^{-4} M 4-ATP solution dropped on the Si substrate.

Fig. S7 TEM (a) and HAAD-STEM (b) images of single Au@Ag core-shell NC. (c-d) EDS elemental mapping of Ag and Au, respectively.
Fig. S8 TEM (a), HRTEM (b), and HAADF-STEM (c) images of solid Au-Ag alloy NCs. (d-e) EDS elemental mapping of Ag and Au, respectively. (f) EDS for solid Au-Ag alloy NCs on the copper grid.

Fig. S9 XRD pattern of solid Au-Ag alloy NCs.
Fig. S10 Size distribution of sponge-like Au-Ag alloy NCs with different etching time of 20, 30, and 40 min.

Fig. S11 Raman spectra on the sponge-like Au-Ag alloy NCs with different dealloying time of 20, 30, and 40 min.
Fig. S12 EDS for sponge-like Au-Ag alloy NRs on the copper grid. The percentage of Au and Ag was 21.3 % and 78.7 %, respectively.

Fig. S13 TEM images of Au@Ag core-shell NRs (a) and Au@Ag@SiO$_2$ NRs (b).
Fig. S14 (a) FESEM image of solid Au-Ag alloy NRs. (b) HAAD-STEM image of single solid Au-Ag alloy NR. (c-d) EDS elemental mapping of Ag and Au, respectively.

Fig. S15 EDS for solid Au-Ag alloy NRs on the copper grid. The percentage of Au and Ag was 15.5 % and 84.2 %, respectively.