Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

## **Electronic Supporting Information for**

# "Sensing properties, energy transfer mechanism and tuneable particle size processing of luminescent two-dimensional rare earth coordination networks"

Agustín A. Godoy<sup>a</sup>, Germán E. Gomez<sup>a</sup>, Anna M. Kaczmarek<sup>b</sup>, Rik Van Deun<sup>b</sup>, Octavio J. Furlong<sup>c</sup>, Felipe Gándara<sup>d</sup>, María A. Monge<sup>d</sup>, María C. Bernini<sup>a</sup> and Griselda E. Narda<sup>a</sup>

<sup>c.</sup> Instituto de Física Aplicada, Universidad Nacional de San Luis CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina.

## Contents

| Section S1. Powder X-Ray Diffraction Refinements | 2  |
|--------------------------------------------------|----|
| Section S2. SEM-EDS                              | 3  |
| Section S3. Thermal Analysis                     | 4  |
| Section S4. FTIR                                 | 7  |
| Section S5. Top-Down approach                    | 12 |
| Section S6. Photoluminescence properties         | 17 |

<sup>&</sup>lt;sup>a.</sup> Instituto de Investigaciones en Tecnología Química (INTEQUI), Área de Química General e Inorgánica "Dr. G. F. Puelles", Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina.

<sup>&</sup>lt;sup>b.</sup> L3 - Luminescent Lanthanide Lab, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent, Belgium.

<sup>&</sup>lt;sup>d.</sup> Department of New Architectures in Material Chemistry, Institute of Material Science of Madrid, ICMM-CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain.





Figure S1. Rietveld refinements for compounds 2-8.

| Compound             | 2         | 3         | 5               | 6         | 7         | 8         |
|----------------------|-----------|-----------|-----------------|-----------|-----------|-----------|
| Crystal system       |           |           | Monoc           | elinic    |           |           |
| Space group          |           |           | P2 <sub>1</sub> | /c        |           |           |
| Unit cell dimensions |           |           |                 |           |           |           |
| <i>a</i> /Å          | 21.151(4) | 21.132(3) | 21.132(3)       | 21.150(6) | 21.114(4) | 21.146(2) |
| <i>b</i> /Å          | 6.104(2)  | 6.1136(8) | 6.1063(8)       | 6.108(1)  | 6.096(1)  | 6.1137(9) |
| <i>c</i> /Å          | 7.640(2)  | 7.639(1)  | 7.631(1)        | 7.643(1)  | 7.613(1)  | 7.646(1)  |
| β                    | 92.35(3)  | 92.35(1)  | 92.31(1)        | 92.38(2)  | 92.26(2)  | 92.34(1)  |
| Rwp                  | 13.1      | 10.4      | 10.4            | 10.5      | 17.2      | 13.4      |
| Rp                   | 10        | 7.58      | 7.45            | 8.27      | 12.3      | 9.57      |
| χ2                   | 5.11      | 4.51      | 4.19            | 2.72      | 13.4      | 7.79      |
| Vol.                 | 985.5(4)  | 986.1(2)  | 983.9(3)        | 986.4(4)  | 979.1(3)  | 987.7(2)  |

 Table S1: Rietveld refinement values for compounds 2-8.

## Section 2. SEM-EDS

Table S2: Estimated composition based on the semi-quantitative analysis of the EDS spectra obtained for compounds 3-9.

| Compounds | mmol   |        |        |  |  |  |
|-----------|--------|--------|--------|--|--|--|
| Compounds | Y      | Eu     | Tb     |  |  |  |
| 3         | 0.9563 | 0.0437 | -      |  |  |  |
| 4         | 0.9102 | 0.0898 | -      |  |  |  |
| 5         | 0.9562 | -      | 0.0438 |  |  |  |
| 6         | 0.9352 | -      | 0.0648 |  |  |  |
| 7         | 0.9510 | 0.0248 | 0.0242 |  |  |  |
| 8         | 0.8835 | 0.0699 | 0.0466 |  |  |  |
| 9         | 0.8620 | 0.0440 | 0.0940 |  |  |  |





Figure S2: Thermogravimetric analysis of compounds 1, 2 (a); 3, 4 (b); 5, 6 (c) and 7-9 (d).

|              | Step 1       |               | Step 2        |                    |                                                                                               |
|--------------|--------------|---------------|---------------|--------------------|-----------------------------------------------------------------------------------------------|
| Compound     | ∆m % (calc.) | DSC peak (°C) | ∆m % (calc.)  | Total ∆m % (calc.) | Final product                                                                                 |
| 1            | 4.97 (4.77)  | 223.03        | 44.64 (45.12) | 49.61 (49.89)      | Ho <sub>2</sub> O <sub>3</sub>                                                                |
| 2            | 6.74 (5.98)  | 231.78        | 56.11 (56.49) | 62.85 (62.47)      | $Y_2O_3$                                                                                      |
| 3            | 6.90 (5.95)  | 230.56        | 57.20 (55.95) | 64.10 (61.90)      | Y <sub>2</sub> O <sub>3</sub> /Eu <sub>2</sub> O <sub>3</sub>                                 |
| 4            | 7.79 (5.87)  | 223.19        | 57.58 (55.46) | 65.37 (61.33)      | Y <sub>2</sub> O <sub>3</sub> /Eu <sub>2</sub> O <sub>3</sub>                                 |
| 5            | 6.15 (5.92)  | 222.28        | 54.54 (55.92) | 60.69 (61.84)      | $Y_2O_3/Tb_2O_3$                                                                              |
| 6            | 6.49 (5.89)  | 227.82        | 54.85 (55.66) | 61.34 (61.55)      | $Y_2O_3/Tb_2O_3$                                                                              |
| 6 100mg CTAB | 6.07 (5.89)  | -             | 53.62 (55.66) | 59.69 (61.55)      | $Y_2O_3/Tb_2O_3$                                                                              |
| 6 200mg CTAB | 6.37 (5.89)  | -             | 55.75 (55.66) | 62.12 (61.55)      | $Y_2O_3/Tb_2O_3$                                                                              |
| 6 400mg CTAB | 6.22 (5.89)  | -             | 55.73 (55.66) | 61.95 (61.55)      | $Y_2O_3/Tb_2O_3$                                                                              |
| 7            | 6.52 (5.915) | 237.39        | 56.53 (55.89) | 63.05 (61.81)      | $Y_2O_3/Eu_2O_3/Tb_2O_3$                                                                      |
| 8            | 6.49 (5.83)  | 234.24        | 57.74 (55.09) | 64.23 (60.92)      | Y <sub>2</sub> O <sub>3</sub> /Eu <sub>2</sub> O <sub>3</sub> /Tb <sub>2</sub> O <sub>3</sub> |
| 9            | 7.08 (5.80)  | 231.44        | 57.54 (54.89) | 64.62 (60.69)      | Y <sub>2</sub> O <sub>3</sub> /Eu <sub>2</sub> O <sub>3</sub> /Tb <sub>2</sub> O <sub>3</sub> |

**Table S3:** Experimental mass decays of TGA curves and expected values of compounds 1-9. The associated DSC peak temperatures are also shown.



**Figure S3.** DSC curves of compounds 1-9 from Room Temperature to 300 °C. The solid line corresponds to the first heating run and the dashed line to the second heating run.





Figure S4. FTIR spectra of compounds 1 and 2.



Figure S5. FTIR spectra of compounds 3 and 4.



Figure S6. FTIR spectra of compounds 5 and 6.



Figure S7. FTIR spectra of compounds 7-9.

| Wavenumber  |             |             |             |                     |              |             |             |             |                                      |
|-------------|-------------|-------------|-------------|---------------------|--------------|-------------|-------------|-------------|--------------------------------------|
|             |             |             |             | (cm <sup>-1</sup> ) |              |             |             |             | Assignment                           |
| 1           | 2           | 3           | 4           | 5                   | 6            | 7           | 8           | 9           |                                      |
| 3545 (m)    | 3549 (m)    | 3551 (m)    | 3549 (m)    | 3551 (m)            | 3548 (m)     | 3549 (m)    | 3548 (m)    | 3548 (m)    | N. OH W                              |
| 3440 (m)    | 3424 (m)    | 3408 (m)    | 3417 (m)    | 3417 (br,w)         | 3412 (br,vw) | 3400 (vw)   | 3405 (vw)   | 3405 (vw)   | VasOII W                             |
| 2922 (vw)   | 2932 (vw)   | 2932 (vw)   | 2932 (vw)   | 2933 (vw)           | 2932 (vw)    | 2933 (vw)   | 2933 (vw)   | 2932 (vw)   | vasC-H                               |
| 1605 (m)    | 1604 (m)    | 1604 (m)    | 1604 (m)    | 1605 (m)            | 1605 (m)     | 1605 (m)    | 1605 (m)    | 1605 (m)    | vCC aromatic ring                    |
| 1570 (s)    | 1573 (s)    | 1573 (s)    | 1573 (s)    | 1573 (s)            | 1572 (s)     | 1573 (s)    | 1572 (s)    | 1572 (s)    | vasOCO<br>bidentate<br>bridge        |
| 1550 (s)    | 1548 (s)    | 1547 (s)    | 1547 (s)    | 1548 (s)            | 1547 (s)     | 1547 (s)    | 1547 (s)    | 1547 (s)    | vasOCO<br>quelate<br>bridge          |
| 1480 (vw)   | 1477 (vw)   | 1478 (vw)   | 1478 (vw)   | 1477 (vw)           | 1477 (vw)    | 1478 (vw)   | 1478 (vw)   | 1477 (vw)   | ðCH2                                 |
| 1460 (br,m) | 1460 (br,m) | 1458 (br,m) | 1456 (br,m) | 1461 (br,m)         | 1461 (br,m)  | 1461 (br,m) | 1461 (br,m) | 1459 (br,m) | vCC aromatic<br>ring + $\delta CH_2$ |
| 1415 (m)    | 1416 (m)    | 1416 (m)    | 1416 (m)    | 1417 (m)            | 1417 (m)     | 1416 (m)    | 1416 (m)    | 1416 (m)    | ðCH2                                 |
| 1400 (m)    | 1401 (s)    | 1401 (s)    | 1400 (m)    | 1401 (s)            | 1401 (s)     | 1400 (m)    | 1400 (m)    | 1400 (m)    | vsOCO                                |
| -           | -           | -           | 1329 (w)    | -                   | -            | -           | 1329 (vw)   | 1329 (vw)   | $\rho_w CH_2$                        |
| 1305 (w)    | 1305 (m)    | 1305 (m)    | 1305 (m)    | 1304 (m)            | 1304 (m)     | 1304 (m)    | 1302 (m)    | 1302 (m)    | $\rho_w CH_2$                        |
| -           | -           | -           | 1283 (vw)   | -                   | -            | -           | -           | 1283 (vw)   | $\rho_{\tau} CH_2$                   |
| 1260 (m)    | 1258 (m)    | 1258 (m)    | 1258 (m)    | 1259 (m)            | 1259 (m)     | 1258 (m)    | 1258 (m)    | 1258 (m)    | vC-O fenoxi                          |
| 1145 (m)            | 1145 (m)     | 1144 (m)    | 1144 (m)    | 1144 (m)    | δCCC<br>aromatic                     |
| 1100 (w)    | 1099 (w)    | 1099 (m)    | 1099 (m)    | 1099 (m)            | 1099 (m)     | 1098 (m)    | 1098 (m)    | 1098 (m)    | vCC aromatic                         |
| 1035 (vw)   | 1035 (vw)   | 1035 (vw)   | 1035 (vw)   | 1035 (w)            | 1035 (w)     | 1035 (w)    | 1035 (w)    | 1035 (w)    | vCC aliphatic<br>+ &C-H<br>aromatic  |
| -           | -           | -           | 976 (w)     | -                   | -            | 976 (vw)    | 976 (vw)    | 976 (vw)    | ρrCH2                                |
| 760 (m)     | 757 (m)     | 757 (m)     | 757 (m)     | 757 (m)             | 757 (m)      | 757 (m)     | 757 (m)     | 757 (m)     | ρrC-H<br>o-<br>disubstituted         |
| -           | -           | -           | 525 (vw)    | -                   | -            | -           | -           | 520 (vw)    | ρrOCO <sub>00p</sub>                 |

## **Table S4:** FTIR spectra assignment of compounds 1-9.

### Section S5. Top-Down approach

#### **Liquid Exfoliation Procedure**

As top-down approach, ultrasonication experiments were performed using 1 mg of compound **6** in 7 mL of absolute ethanol (Anedra). This mixture was placed in a glass test tube with a screw cap. The tube was placed in the ultrasound (ICSA), and tests were performed at 40 and 60 KHz; the colloidal suspension was obtained when the lowest frequency was applied. The equipment power rout put can be varied in the 10-100% range, the maximum range achievable being of 150-180 W. Three power ranges were studied: 60-72 W (40%), 90-108 W (60%) and 150-180 W (100%). Moreover, the ultrasonication time was also considered as an experimental variable, with 15, 30 and 60 min for the intermediate and highest power ranges, while 30, 60 and 120 min were applied for the lowest power range. Each sample was analysed by Scanning Electron Microscopy (SEM) by dropping the colloidal suspensions onto the sample holder. Selected samples were further characterized by Atomic Force Microscopy (AFM).



Figure S8. Figure S10: SEM micrographs of particles resulting from different LE treatment times at 66 W; 30 min (a,b), 60 min (c,d) and 120 min (e,f). A scale bar is displayed in each case.



Figure S9: SEM micrographs of particles resulting from different LE treatment times at 99 W; 15 min (a,b), 30 min (c,d) and 60 min (e,f). A scale bar is displayed in each case.



Figure S10: SEM micrographs of particles resulting from different LE treatment times at 165 W; 15 min (a,b), 30 min (c,d) and 60 min (e,f). A scale bar is displayed in each case.



Figure S11. Comparison between PXRD patterns of compound 6 before and after exfoliation treatment.



Figure S12. Excitation (a) and emission (b) spectra and luminescence time decay (c) of compound 1.



Figure S12. Lifetime decays of compounds 5 and 6. The inset shows the corresponding parameters obtained from the profile fittings

| Excitation |                    |                            |                                                   | E                  | mission            |                            |                                                             |
|------------|--------------------|----------------------------|---------------------------------------------------|--------------------|--------------------|----------------------------|-------------------------------------------------------------|
| label      | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                        | label              | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                                  |
|            |                    |                            | Comp                                              | ound <b>1</b> RT   |                    |                            |                                                             |
| a          | 364                | 27282.9                    | $S_0 \rightarrow {}^1S^*$                         | b                  | 1006.1             | 1396.6                     | ${}^5\mathrm{F}_5 \mathop{\longrightarrow}^{5}\mathrm{I}_7$ |
|            |                    |                            | Comp                                              | ound <b>2</b> RT   |                    |                            |                                                             |
| a          | 317                | 31545.7                    | $S_0 \rightarrow {}^1S^*$                         | b                  | 390                | 25641.0                    | ${}^{1}S^{*} \rightarrow S_{0}$                             |
|            |                    |                            |                                                   | с                  | 461                | 21692.0                    | ${}^{1}S^{*} \rightarrow S_{0}$                             |
|            |                    |                            | Compo                                             | ound <b>2</b> 70 k | X                  |                            |                                                             |
|            |                    |                            |                                                   | b                  | 377                | 26525.2                    | ${}^{1}S^{*} \rightarrow S_{0}$                             |
|            |                    |                            |                                                   | b*                 | 425                | 23529.4                    | ${}^{3}T^{*} \rightarrow S_{0}$                             |
|            |                    |                            |                                                   | c                  | 464                | 21551.7                    | ${}^{1}S^{*} \rightarrow S_{0}$                             |
|            | E                  | excitation                 |                                                   |                    | E                  | mission                    |                                                             |
| label      | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                        | label              | wavelength (nm)    | energy (cm <sup>-1</sup> ) | Transition                                                  |
|            |                    |                            | Comp                                              | ound <b>3</b> RT   |                    |                            |                                                             |
| c          | 356                | 28089.9                    | ${}^5D_4 \rightarrow {}^7F_0$                     | h                  | 470                | 21276.6                    | ${}^{1}S^{*} \rightarrow S_{0}$                             |
| d          | 373                | 26809.7                    | ${}^{5}D_{4} \rightarrow {}^{7}F_{1}$             |                    |                    |                            |                                                             |
| e          | 393                | 25445.3                    | ${}^{5}L_{6} \rightarrow {}^{7}F_{0}$             |                    |                    |                            |                                                             |
| g          | 465                | 21505.4                    | ${}^{5}D_{2} \rightarrow {}^{7}F_{0}$             |                    |                    |                            |                                                             |
|            | I                  | Excitation                 |                                                   |                    | E                  | Emission                   |                                                             |
| label      | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                        | label              | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                                  |
|            |                    |                            | Comp                                              | ound <b>4</b> RT   |                    |                            |                                                             |
| а          | 297                | 33670.0                    | ${}^{5}I_{4} \rightarrow {}^{7}F_{1}$             | h                  | 470                | 21276.6                    | ${}^{1}S^{*} \rightarrow S_{0}$                             |
| b          | 320                | 31250.0                    | $S_0 \rightarrow {}^1S^*$                         | i                  | 620                | 18484.3                    | ${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$     |
| c          | 356                | 28089.9                    | $^5D_4 \rightarrow ^7\!\! F_0$                    |                    |                    |                            |                                                             |
| d          | 373                | 26809.7                    | $^5D_4 \rightarrow ^7\!\! F_1$                    |                    |                    |                            |                                                             |
| e          | 393                | 25445.3                    | ${}^{5}L_{6} \rightarrow {}^{7}F_{0}$             |                    |                    |                            |                                                             |
| f          | 416                | 24038.5                    | ${}^{5}D_{3} \rightarrow {}^{7}F_{1}$             |                    |                    |                            |                                                             |
| g          | 465                | 21505.4                    | $^5\mathrm{D}_2 \!\rightarrow^7\!\! \mathrm{F}_0$ |                    |                    |                            |                                                             |
|            | ]                  | Excitation                 |                                                   |                    | E                  | Emission                   |                                                             |
| label      | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                        | label              | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                                  |
|            |                    |                            | Comp                                              | ound <b>5</b> RT   |                    |                            |                                                             |
| а          | 323                | 30959.8                    | $S_0 \rightarrow {}^1S^*$                         | b                  | 488                | 20491.8                    | ${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{6}$     |
|            |                    |                            |                                                   | с                  | 541                | 18484.3                    | $^5D_4 \rightarrow ^7\!\! F_5$                              |
|            |                    |                            |                                                   | d                  | 583                | 17152.7                    | ${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{4}$     |

# **Table S5**: Excitation and emission spectra assignment of compounds 1-9.

| Excitation |                    |                            |                           | E                | mission            |                            |                                                                           |
|------------|--------------------|----------------------------|---------------------------|------------------|--------------------|----------------------------|---------------------------------------------------------------------------|
| label      | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                | label            | wavelength<br>(nm) | energy (cm <sup>-1</sup>   | ) transition                                                              |
|            |                    |                            | Compound                  | <b>6</b> RT (10  | K)*                |                            |                                                                           |
| a          | 323                | 30959.8                    | $S_0 \rightarrow {}^1S^*$ | b (b)            | 488                | 20491.8                    | ${}^5\mathrm{D}_4 \rightarrow {}^7\mathrm{F}_6$                           |
|            |                    |                            |                           | c (c)            | 541                | 18484.3                    | $^5\mathrm{D}_4\!\rightarrow^7\!\mathrm{F}_5$                             |
|            |                    |                            |                           | d (d)            | 583                | 17152.7                    | $^{5}\mathrm{D}_{4} \rightarrow ^{7}\mathrm{F}_{4}$                       |
|            |                    |                            |                           | e (e)            | 621                | 16103.1                    | $^5\mathrm{D}_4 \rightarrow ^7\mathrm{F}_3$                               |
|            |                    |                            |                           | (f)              | 653                | 15313.9                    | $^5\mathrm{D}_4 \mathop{\rightarrow}^7\mathrm{F}_2$                       |
|            |                    |                            |                           | (g)              | 669                | 14947.7                    | ${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{1}$                   |
|            |                    |                            |                           | (h)              | 692                | 14450.9                    | $^5\mathrm{D}_4\!\rightarrow^7\!\mathrm{F}_0$                             |
|            | -                  | Excitation                 |                           |                  | E                  | mission                    |                                                                           |
| label      | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                | label            | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                                                |
|            |                    |                            | Compound                  | <b>7</b> RT (10  | K) *               |                            |                                                                           |
| a          | 323                | 30959.8                    | $S_0 \rightarrow {}^1S^*$ | b (b)            | 488                | 20491.8                    | ${}^{5}\text{D}_{4} \rightarrow {}^{7}\text{F}_{6(\text{Tb3+})}$          |
|            |                    |                            |                           | c (c)            | 541                | 18484.3                    | ${}^{5}D_{4} \rightarrow {}^{7}F_{5 (Tb3+)}$                              |
|            |                    |                            |                           | d (d)            | 583                | 17152.7                    | ${}^{5}D_{4} \rightarrow {}^{7}F_{4 (Tb3+)}$                              |
|            |                    |                            |                           | (e)              | 612                | 16339.9                    | ${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2(\mathrm{Eu}3^{+})}$ |
|            |                    |                            |                           | f (f)            | 621                | 16103.1                    | ${}^{5}D_{4} \rightarrow {}^{7}F_{3 (Tb3+)}$                              |
|            |                    |                            |                           | g (g)            | 648                | 15432.1                    | ${}^{5}D_{4} \rightarrow {}^{7}F_{2 (Tb3+)}$                              |
|            |                    |                            |                           | h (h)            | 668                | 14970.1                    | ${}^{5}D_{4} \rightarrow {}^{7}F_{1 (Tb3+)}$                              |
|            |                    |                            |                           | i (i)            | 685                | 14598.5                    | ${}^5\mathrm{D}_4 \longrightarrow {}^7\mathrm{F}_{0(\mathrm{Tb}3^+)}$     |
|            | -                  | Excitation                 |                           |                  | Eı                 | mission                    |                                                                           |
| label      | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                | label            | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                                                |
|            |                    |                            | Comp                      | ound <b>8</b> RT |                    |                            |                                                                           |
| а          | 323                | 30959.8                    | $S_0 \rightarrow {}^1S^*$ | b                | 488                | 20491.8                    | ${}^5\mathrm{D}_4 {	o}^7\mathrm{F}_6$                                     |
|            |                    |                            |                           | c                | 541                | 18484.3                    | $^5\mathrm{D}_4\!\rightarrow^7\!\mathrm{F}_5$                             |
|            |                    |                            |                           | d                | 583                | 17152.7                    | ${}^5D_4 \rightarrow {}^7F_4$                                             |
|            |                    |                            |                           | e                | 621                | 16103.1                    | ${}^{5}D_{4} \rightarrow {}^{7}F_{3}$                                     |
|            |                    |                            |                           | f                | 648                | 15432.1                    | $^5D_4 \rightarrow ^7F_2$                                                 |
|            |                    |                            |                           | g                | 668                | 14970.1                    | $^5\mathrm{D}_4 \rightarrow ^7\mathrm{F}_1$                               |
|            |                    |                            |                           | h                | 685                | 14598.5                    | ${}^{5}D_{4} \rightarrow {}^{7}F_{0}$                                     |
|            |                    | Excitation                 |                           |                  | E                  | mission                    |                                                                           |

| label | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                | label            | wavelength<br>(nm) | energy (cm <sup>-1</sup> ) | transition                                          |
|-------|--------------------|----------------------------|---------------------------|------------------|--------------------|----------------------------|-----------------------------------------------------|
|       |                    |                            | Comp                      | ound <b>9</b> RT |                    |                            |                                                     |
| a     | 323                | 30959.8                    | $S_0 \rightarrow {}^1S^*$ | b                | 488                | 20491.8                    | $^5\mathrm{D}_4 \!\rightarrow^7\!\!\mathrm{F}_6$    |
|       |                    |                            |                           | c                | 541                | 18484.3                    | $^5D_4 \rightarrow ^7\!\! F_5$                      |
|       |                    |                            |                           | d                | 583                | 17152.7                    | $^5\mathrm{D}_4\!\rightarrow^7\!\!\mathrm{F}_4$     |
|       |                    |                            |                           | e                | 621                | 16103.1                    | $^5D_4 \rightarrow ^7\!F_3$                         |
|       |                    |                            |                           | f                | 648                | 15432.1                    | $^5D_4 \rightarrow ^7\!F_2$                         |
|       |                    |                            |                           | g                | 668                | 14970.1                    | $^5D_4 \rightarrow ^7\!\! F_1$                      |
|       |                    |                            |                           | h                | 685                | 14598.5                    | $^5\mathrm{D}_4 \mathop{\rightarrow}^7\mathrm{F}_0$ |



**Figure S14.** Top-left: lifetime decay of compound 6' in ethanolic suspension; top-right: lifetime decay of compound 6' after ethanol evaporation. Bottom: Excitation and emission spectra of compound 6' in ethanolic suspension and after solvent evaporation.



Figure S15. Lifetime decays of compound 6' in suspensions of different solvents.

**Table S6:** Lifetime calculated from the corresponding decay fittings of the data in Figure S15.

| 6'/solvent                  | $\tau_{obs}$ (ms) |
|-----------------------------|-------------------|
| 6'                          | 1.127             |
| <b>6'</b> /H <sub>2</sub> O | 1.092             |
| 6'/MeOH                     | 1.13              |
| 6'/EtOH                     | 1.102             |
| 6'/n-hexane                 | 1.093             |
| 6'/acetone                  | 1.087             |
| <b>6'</b> /DMF              | 1.079             |
| 6'/toluene                  | 1.040             |