Supporting Information

Co-precipitation synthesis and photoluminescence properties of
\(\text{BaTiF}_6: \text{Mn}^{4+} \): an efficient red phosphor for warm white LEDs

Yong Liu, Guojun Gao, Lin Huang, Yiwen Zhu, Xuejie Zhang, Jinbo Yu, Bryce S. Richards, Tongtong Xuan, Zhengliang Wang* and Jing Wang*

a. Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.

*E-mail: ceswj@mail.sysu.edu.cn

b. Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

c. Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany

d. Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500, P. R. China, *E-mail: wangzhengliang@foxmail.com

Synthesis of \(\text{BaTiF}_6: \text{Mn}^{4+} \)

The red phosphor \(\text{BaTi}_{0.97}\text{F}_6:0.03\text{Mn}^{4+} \) samples were synthesized through a hydrothermal route. The specific process is as follows: firstly, 2.5 mmol of \(\text{TiO}_2 \), 2.5 mmol of \(\text{BaF}_2 \) and 0.075 mmol of \(\text{K}_2\text{MnF}_6 \) were added into a solution containing 5 mL of HF (40% wt). secondly, the mixed solution was stirred for 10 min and then transferred into an 10 mL of Teflon lined autoclave. The autoclave was maintained at 120 °C for 15 h. As the autoclave was cooled to room temperature naturally, the final products were washed three times with ethanol. At last, the product was dried at 80 °C for 2 h.

![Fig. S1](Image)

Fig. S1. (a) XRD pattern of the red phosphors \(\text{BaTi}_{0.97}\text{F}_6:0.03\text{Mn}^{4+} \) by hydrothermal method at 150 °C for 12 h and (b) PL (\(\lambda_{\text{ex}} = 460 \) nm) spectra of the red phosphors \(\text{BaTi}_{0.97}\text{F}_6:0.03\text{Mn}^{4+} \) by hydrothermal method (black line) and coprecipitation method (red line).
Fig. S2 Spectrum of the excitation light without the BaTi$_{0.97}$F$_{6}$:0.03Mn$^{4+}$ sample (E_R), spectrum of the light used for exciting the BaTi$_{0.97}$F$_{6}$:0.03Mn$^{4+}$ sample (E_S), luminescence emission spectrum of the BaTi$_{0.97}$F$_{6}$:0.03Mn$^{4+}$ sample (L_S), and the inset shows a magnification of the emission spectrum.

Note: QE is defined as the ratio of the number of emitted photons (I_{em}) to the number of absorbed photons (I_{abs}), and can be calculated by the following equation:

$$IQE = \frac{I_{em}}{I_{abs}} = \frac{\int L_S}{\int E_R - \int E_S}$$

where E_R is the spectrum of the excitation light without the sample in the sphere, E_S is the spectrum of the light used for exciting the sample, and L_S is the luminescence emission spectrum of the sample.

Fig. S3 The temperature-dependent PL intensity of the as-synthesized BaTi$_{0.97}$F$_{6}$:0.03Mn$^{4+}$ in the wavelength ranges of 605–623 nm (I_a), and 623–655 nm (I_s).