Thermally activated delayed fluorescence material with aggregation-induced emission properties for highly efficient organic light-emitting diodes

Yaodong Zhaoa#, Weigao Wangc#, Chen Guid, Li Fanga, Xinlei Zhanga, Shujuan Wanga, Shuming Chene, Heping Shia,b,*, Ben Zhong Tangb,d*

(a) School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China. *E-mail: hepingshi@sxu.edu.cn

(b) State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, 510640, PR China. *E-mail: tangbenz@ust.hk

(c) Department of Electrical and Electronic Engineering, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, P. R. China. *Email: chen.sm@sustc.edu.cn

(d) Department of Chemistry, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. *E-mail: tangbenz@ust.hk

Yaodong Zhao# and Weigao Wang# have equal contribution

Electronic Supplementary Information (ESI)
1H NMR of compound 1

1H NMR of compound 2
13C NMR of compound 2

1H NMR of compound DCPDAPM
13C NMR of compound DCPDAPM
Fig. S1. TGA and DSC of DCPDAPM

Fig. S2. UV-vis absorption spectra of DCPDAPM in various solvents (10⁻⁵ mol L⁻¹)
Fig. S3. Fluorescence spectra of DCPDAPM in various solvents (10^{-5} \text{mol L}^{-1})

Fig. S4. Fluorescence and phosphorescence spectra of DCPDAPM in solid film
Fig. S5 Transient PL decay curves of DCPDAPM in THF solution (10.0 μM). Insets depict PL spectra of nitrogen/oxygen in THF solution.

Fig. S6. The cyclic voltammogram curves of DCPDAPM in THF solvents (10^3 mol L^-1)