Electronic Supplementary Information

Magnetic nanoparticles/PEDOT:PSS composite hole-injection layer for efficient organic light-emitting diodes

Hong Lian,a Zhenyu Tang,b Hongen Guo,a Zheng Zhong,a Jian Wu,a Qingchen Dong,a Furong Zhu,c Bin Wei,b and Wai-Yeung Wongad

a MOE Key Laboratory of Interface Science and Engineering in Advanced Materials and Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China. *E-mail: dongqingchen@tyut.edu.cn.
b MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, Shanghai, 200072, China. *E-mail: bwei@shu.edu.cn.
c Department of Physics, Institute of Advanced Materials and Institute of Research and Continuing Education (Shenzhen), Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong, China. *E-mail: frzhu@hkbu.edu.hk.
d Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. *E-mail: wai-yeung.wong@polyu.edu.hk.
Figure S1. (a) XRD spectra of as-synthesized Fe₃O₄@G, Fe₃O₄@SiO₂ and Fe₃O₄@Au NPs; (b) Raman spectrum of Fe₃O₄@G NPs.

Figure S2. Size distributions of as-prepared (a) Fe₃O₄@G NPs, (b) Fe₃O₄@SiO₂ NPs and (c) Fe₃O₄@Au NPs, obtained from the TEM images shown in Figure 1a-1c.

Figure S3. Time-resolved PL (TRPL) spectra measured for the PEDOT:PSS/Alq₃ thin films deposited on quartz glasses with and without the presence of Fe₃O₄@G and Fe₃O₄@SiO₂ MNPs.