Enantioselective separation of RS-mandelic acid using β-cyclodextrin modified Fe₃O₄@SiO₂/Au microspheres

Xiaojuan Deng⁺,⁺, Wenbin Li⁺, Guosheng Ding⁺, and Xiaoping Chen⁺⁺

⁺ School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
⁺⁺ Analysis Center, Tianjin University, Tianjin, 300072, China
⁺⁺ Dikma Technologies Inc., Tianjin, 300402, China

*Corresponding authors at: School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
Tel.: +86 22 27407782; fax: +86 22 27405694.

E-mail addresses: dxj@tju.edu.cn (X. Deng).
Fig. S1 The 1H-NMR (500MHz, DMSO) spectra of (a) β-CD, (b) SH-β-CD, (c) Au-SH-β-CD.

Fig. S2 Magnetic Fe$_3$O$_4$ microspheres with diameter of (a) ≈100 nm, (b) ≈300 nm, (c) ≈600 nm.
Fig. S3 The effect of adsorption time for sorption of MA on magnetic Fe₃O₄@SiO₂/Au/β-CD composites.

Fig. S4 The effect of adsorbent amount for sorption of MA on magnetic Fe₃O₄@SiO₂/Au/β-CD composites.
Fig. S5 The molecular structures of (a) β-CD and (b) mandelic acid.