Supporting Information for

DNA Microarray Analysis Using Smartphone to Detect BRCA-1 Gene

Alisha Prasad¹, Syed Mohammad Abid Hasan¹, Steven Grouchy¹, Manas Ranjan Gartia¹*

¹Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States

* All correspondences should be addressed to mgartia@lsu.edu

Table of Content

Fig. S-1 Degree of spreading of wax ... S-2
Fig. S-2 Evaluating the minimum space between channels S-3
Fig. S-3 Evaluating the minimum space between lines S-4
Fig. S-4 Dimension of the optimized channel ... S-5
Fig. S-5 Evaluating degree of dilution ... S-5
Fig. S-6 Understanding the influence of design parameters S-6
Fig. S-7 Limit of detection of FluoroZen ... S-6

Table. S-1 Cost estimate of FluoroZen with all its components S-7
Calculation of DNA copy number ... S-7
Fig. S-1 Degree of spreading of wax in paper. (a) Optical micrographs showing changes “before” and “after” baking lines with nominal widths from 100 - 450 µm. (b) Quantitative assessment showing the linear relationship of spreading of molten wax in Whatman paper. The values represent an average (n = 3) of measured line widths, and a linear fit yielded $W_b = 1.01W_p + 120$, $R^2 = 0.99$. Scale bar: 100 µm. (W_b = Barrier width, W_p = Printed Width)
Fig. S-2 Evaluating the minimum space that can be created using two channels. (a) Optical micrographs showing the space between the channels “before” and “after” baking lines with nominal widths from 20 – 350 µm. (b) Quantitative assessment showing the linear relationship of spreading of molten wax to create a desired minimum space. The values represent an average (n = 3) of measured line widths, and a linear fit yielded $S_b = 0.95S_p - 65$, $R^2 = 0.99$. Scale bar: 100 µm. ($S_b =$ Barrier space, $S_p =$ Printed space).
Fig. S-3 Evaluating the minimum space that can be created using two lines. (a) Optical micrographs showing the space between the lines “before” and “after” baking lines with nominal widths from 100 – 600 µm. (b) Quantitative assessment showing the linear relationship of spreading of molten wax to create a desired minimum space. The values represent an average (n = 3) of measured line widths, and a linear fit yielded $S_{b\text{-black BG}} = 0.92S_{p\text{-black BG}} - 77$, $R^2 = 0.99$. Scale bar: 100 µm. ($S_{b\text{-black BG}}$ = Barrier space created with black background, $S_{p\text{-black BG}}$ = Printed space created with black background)
Fig. S-4 Dimension of the Optimized Channel

Fig. S-5 Evaluating degree of dilution. (a) Baked channel after wax printing. (b) Image captured from FluoroZen showing the degree of dilution with each step after adding Cy3-DNA and SSC buffer in the specified channels. (c) Bar chart showing the intensity changes w.r.t concentration.
Fig. S-6 Understanding the influence of design parameters on fluid flow in microfluidics. (a) Whole channel showing no outflow of red colored food dye with increase in sample volume from 0.1 - 1 µL (top) and Hollow channel showing outflow of red colored food dye with increase in sample volume from 0.1 - 0.5 µL (bottom). (b) Circle and Square shaped whole channels with increase in area from left to right showing the same fluid behavior or the “coffee ring effect”. Simplified design with reduced sampling time to conduct experiments on paper based (c) 96-well plate, and (d) 384-well plate. (e) An Olympic Channel design showing mixing of two food dyes when introduced from opposite ends. (f) Star shaped channel showing star like flow indicating that the fluid flow is guided by the design of the channel.

Fig. S-7 Limit of detection of FluoroZen in terms of fluorescence intensity (RGB pixel value) corresponding to Figure 6. Image sets of arrays with various concentrations of Cy3-DNA oligonucleotide probes from 0 – 10 µM and the background. Original image, blue, green, and red channel.
Table. S-1 Cost estimate of FluoroZen with all its components.

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>COST ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excitation Filter (XF1074 525AF45)</td>
<td>200</td>
</tr>
<tr>
<td>Emission Filter (XF3085 565ALP)</td>
<td>125</td>
</tr>
<tr>
<td>Green LED (525nm)</td>
<td>0.1</td>
</tr>
<tr>
<td>Nuts and Bolts</td>
<td>1.0</td>
</tr>
<tr>
<td>Bread Board</td>
<td>1.0</td>
</tr>
<tr>
<td>Resistor</td>
<td>0.1</td>
</tr>
<tr>
<td>Battery</td>
<td>1.0</td>
</tr>
<tr>
<td>Switch</td>
<td>1.0</td>
</tr>
<tr>
<td>3D Printing</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>344.2</td>
</tr>
</tbody>
</table>

DNA Copy Number Calculation:

Assuming that the average weight of 1 base pair (bp) ≈ 660 g/mol

For 20bp,

\[
\text{Total number of DNA molecules (g)} = \frac{20 \times 660 \text{ (g/mol)}}{6.023 \times 10^{23} \text{ (molecules/mol)}} = 2.191 \times 10^{-20} \text{ g}
\]

For 100 μM stock concentration,

\[
\text{DNA Copy Number} = \frac{1030.9 \times 10^{-6} \text{ g}}{2.191 \times 10^{-20} \text{ g}} = 470.5 \times 10^{14}
\]

\[
\approx 4.705 \times 10^{14} \text{ number of DNA copies/ 1.65 mL}
\]

For 1 μL of working volume,

\[
\text{DNA Copy Number} = \frac{4.705 \times 10^{16}}{1.65 \times 10^{3}} = 2.85 \times 10^{13}
\]

For 0.4 μM limit of detectable concentration,

\[
\text{Dilution Factor} = \frac{100 \mu \text{M}}{0.4 \mu \text{M}} = 250
\]

Therefore at 0.4 μM, we are detecting,

\[
\text{DNA Copy Number} = \frac{2.85 \times 10^{13}}{250} = 1 \times 10^{11} \text{ number of DNA copies} \approx 11 \log 10