Supporting Information

Effects and Controls of Capacitive Hysteresis in Ionic Liquid Electrochemical Measurements

Anthony J. Lucio and Scott K. Shaw*

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States

*Corresponding Author

TABLE OF CONTENTS

S1. Cover Page / Table of Contents
S2. Figure S1: Schematic illustration of the three different data acquisition protocols
S2. Figure S2: Scan rate dependent DC CVs for the medium 2.1 V potential range and overlay of DC CVs for the three potential ranges examined
S3. Expanded Results and Discussion section for EIS data analysis
S4. Figure S3: Ohmic corrected Bode plots
S5. Figure S4: Zoomed in capacitance curves from the three different potential ranges
S6. Figure S5: Overlay of capacitance curves from the three different data acquisition protocols
S7. Figure S6: Overlay of single-frequency capacitance curves from three different data acquisition protocols
S8. Supporting Information references
Figure S1. Schematic illustration of the three different data acquisition protocols used in this study. HoldE: Hold potential. OCP: Open Circuit Potential rest. NoEq: No equilibration time. Each EIS spectrum in the present study takes ca. 2.5 min to acquire.
Figure S2. (a) Scan rate dependent DC CVs for the medium 2.1 V potential range at 800, 500, 300, 100, 50, and 20 mV s\(^{-1}\). The inset shows the 20 mV s\(^{-1}\) CV with no evidence of peaks in the DC voltammogram. The arrow points to increasing scan rates. (b) Overlay of representative DC voltammograms at 100 mV s\(^{-1}\) for the large (3.1 V), medium (2.1 V), and small (1.1 V) potential ranges examined.
The electrochemical equivalent circuit used to model EIS data consists of a bulk electrolyte resistance (R_s) in series with a parallel-connected high frequency capacitance (C_{hf}) and a constant phase element (CPE) as shown in Figure 2a. CPE-containing equivalent circuits have been discussed controversially in the IL literature,1-7 with the main criticism arising from the physical interpretation of a CPE, which is often used as a ‘universal’ fit parameter. Ohmic corrected modulus and phase angle plots (see Figure S3a) subtract out the bulk property (i.e. R_s) from the Z' values, which permits the identification of CPE characteristics to be seen if present. At frequencies <10 kHz the slope of the modulus is -0.9 (where -1 represents ideal CPE behavior) approximately the negative of the α value (0.91) from the fitting process. The phase angle plot suggests a value of -81° (where -90° represents ideal CPE behavior) at frequencies <10 kHz. The θ_{adj} term is related to the α value from the fitting process by $\alpha = -\theta_{adj}/90° = 0.90$, in excellent agreement with the value from the modulus slope. Orazem et al. demonstrated there can be geometry induced frequency dispersion of impedance data above a characteristic frequency (f_c).8 For the present electrochemical system (using $k = 0.0022$ Ω$^{-1}$ cm$^{-1}$,9 $Q = 1.97 \times 10^{-6}$ sa Ω$^{-1}$ cm$^{-2}$, $\alpha = 0.91$ and $r_0 = 0.15$ cm) we find that $f_c > 3$ kHz, which is in qualitative agreement with Figure S3a (see vertical red dash-dot line). Lastly, the residual error of the modulus and the phase angle for the representative data set at 0.0 V vs. Fc/Fc$^+$ is shown in Figure S3b and demonstrates that the difference between the measured and calculated data is less than 2 % and 2° (omitting the four highest frequencies) for the modulus and phase angle, respectively.

It should be noted that the average resistance value from this work is ca. 920 ± 50 Ω. The time constant is calculated from the average R_s and $C_{eff, surf}$ values to be on the order of 1 ms.
Figure S3. (a) Ohmic corrected modulus (grey squares) and phase angle (purple upward triangles) Bode plots from representative 0.0 V vs. Fc/Fc+ EIS data set. At frequencies <10 kHz the plots reveal CPE behavior. The dashed black line (----) denotes -81° for the phase angle and the red dash-dot line (−∙−∙) corresponds to the characteristic frequency (f_c) above which the electrode geometry can influence our impedance data. (b) Residual error plots of the modulus and phase angle for the 0.0 V vs. Fc/Fc+ EIS data set. The arrows point to their respective axis.
Figure S4. Zoomed in capacitance-potential curves from the three different potential windows (a) large = 3.1 V, (b) medium = 2.1 V, and (c) small = 1.1 V. The anodic and cathodic potential scan directions are denoted with filled and open symbols, respectively.
Figure S5. Capacitance-potential curves from the three different data acquisition protocols showing (a) anodic and (b) cathodic scan directions. HoldE = hold at potential for 10 min, OCP = cell left at OCP for 10 min, and NoEq = data acquired with no wait time in-between collecting EIS spectra.
Figure S6. Capacitance-potential curves obtained from three different data acquisition protocols for single-frequency impedance (10 Hz, 10 mV rms) measurements showing (a) anodic and (b) cathodic scan directions. b2b = back-to-back acquisition, OCP = cell left at OCP for 10 min before switching scan direction, and HoldE = held at switching potential for 10 min before changing scan direction.
Supporting Information References:

(S4) T. Pajkossy and R. Jurczakowski, *Current Opinion in Electrochemistry*, 2017, **1**, 53-58.