Supporting Information

Effects and Controls of Capacitive Hysteresis in Ionic Liquid Electrochemical Measurements

Anthony J. Lucio and Scott K. Shaw*

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States

*Corresponding Author

TABLE OF CONTENTS

S1. Cover Page / Table of Contents

S2. Figure S1: Schematic illustration of the three different data acquisition protocols

S2. Figure S2: Scan rate dependent DC CVs for the medium 2.1 V potential range and overlay of DC CVs for the three potential ranges examined

S3. Expanded Results and Discussion section for EIS data analysis

S4. Figure S3: Ohmic corrected Bode plots

S5. Figure S4: Zoomed in capacitance curves from the three different potential ranges

S6. Figure S5: Overlay of capacitance curves from the three different data acquisition protocols

S7. Figure S6: Overlay of single-frequency capacitance curves from three different data acquisition protocols

S8. Supporting Information references

Time (minutes)

Figure S1. Schematic illustration of the three different data acquisition protocols used in this study. HoldE: Hold potential. OCP: Open Circuit Potential rest. NoEq: No equilibration time. Each EIS spectrum in the present study takes ca. 2.5 min to acquire.

Figure S2. (a) Scan rate dependent DC CVs for the medium 2.1 V potential range at 800, 500, 300, 100, 50, and 20 mV s⁻¹. The inset shows the 20 mV s⁻¹ CV with no evidence of peaks in the DC voltammogram. The arrow points to increasing scan rates. (b) Overlay of representative DC voltammograms at 100 mV s⁻¹ for the large (3.1 V), medium (2.1 V), and small (1.1 V) potential ranges examined.

The electrochemical equivalent circuit used to model EIS data consists of a bulk electrolyte resistance (R_s) in series with a parallel-connected high frequency capacitance (C_{hf}) and a constant phase element (CPE) as shown in Figure 2a. CPEcontaining equivalent circuits have been discussed controversially in the IL literature,^{S1-S7} with the main criticism arising from the physical interpretation of a CPE, which is often used as a 'universal' fit parameter. Ohmic corrected modulus and phase angle plots (see **Figure S3a**) subtract out the bulk property (i.e. R_{o}) from the Z' values, which permits the identification of CPE characteristics to be seen if present. At frequencies <10 kHz the slope of the modulus is -0.9 (where -1 represents ideal CPE behavior) approximately the negative of the α value (0.91) from the fitting process. The phase angle plot suggests a value of -81° (where -90° represents ideal CPE behavior) at frequencies <10 kHz. The θ_{adj} term is related to the α value from the fitting process by $\alpha = -\theta_{adj}/90^\circ = 0.90$, in excellent agreement with the value from the modulus slope. Orazem et al. demonstrated there can be geometry induced frequency dispersion of impedance data above a characteristic frequency (f_c) .^{S8} For the present electrochemical system (using $\kappa = 0.0022 \ \Omega^{-1} \ \text{cm}^{-1}$, ^{S9} $Q = 1.97 \times 10^{-6} \ \text{s}^{\alpha} \ \Omega^{-1} \ \text{cm}^{-2}$, $\alpha =$ 0.91 and $r_0 = 0.15$ cm) we find that $f_c > 3$ kHz, which is in qualitative agreement with Figure S3a (see vertical red dash-dot line). Lastly, the residual error of the modulus and the phase angle for the representative data set at 0.0 V vs. Fc/Fc⁺ is shown in Figure S3b and demonstrates that the difference between the measured and calculated data is less than 2 % and 2° (omitting the four highest frequencies) for the modulus and phase angle, respectively.

It should be noted that the average resistance value from this work is ca. 920 ± 50 Ω . The time constant is calculated from the average R_s and $C_{\text{eff,surf}}$ values to be on the order of 1 ms.

Figure S3. (a) Ohmic corrected modulus (grey squares) and phase angle (purple upward triangles) Bode plots from representative 0.0 V vs. Fc/Fc⁺ EIS data set. At frequencies <10 kHz the plots reveal CPE behavior. The dashed black line (----) denotes -81° for the phase angle and the red dash-dot line (----) corresponds to the characteristic frequency (f_c) above which the electrode geometry can influence our impedance data. (b) Residual error plots of the modulus and phase angle for the 0.0 V vs. Fc/Fc⁺ EIS data set. The arrows point to their respective axis.

Figure S4. Zoomed in capacitance-potential curves from the three different potential windows (a) large = 3.1 V, (b) medium = 2.1 V, and (c) small = 1.1 V. The anodic and cathodic potential scan directions are denoted with filled and open symbols, respectively.

Figure S5. Capacitance-potential curves from the three different data acquisition protocols showing (a) anodic and (b) cathodic scan directions. HoldE = hold at potential for 10 min, OCP = cell left at OCP for 10 min, and NoEq = data acquired with no wait time in-between collecting EIS spectra.

Figure S6. Capacitance-potential curves obtained from three different data acquisition protocols for single-frequency impedance (10 Hz, 10 mV rms) measurements showing (a) anodic and (b) cathodic scan directions. b2b = back-to-back acquisition, OCP = cell left at OCP for 10 min before switching scan direction, and HoldE = held at switching potential for 10 min before changing scan direction.

Supporting Information References:

(S1) M. Gnahm, T. Pajkossy and D. M. Kolb, *Electrochim. Acta*, 2010, 55, 6212-6217.
(S2) T. Jaensch, J. Wallauer and B. Roling, *J. Phys. Chem. C*, 2015, 119, 4620-4626.

(S3) M. T. Alam, J. Masud, M. M. Islam, T. Okajima and T. Ohsaka, *J. Phys. Chem. C*, 2011, **115**, 19797-19804.

(S4) T. Pajkossy and R. Jurczakowski, *Current Opinion in Electrochemistry*, 2017, **1**, 53-58.

(S5) C. Mueller, S. Vesztergom, T. Pajkossy, T. Jacob, J. Electroanal. Chem. 2015, 737, 218-225.

(S6) T. Pajkossy, D. M. Kolb, *Electrochem. Commun.* 2011, 13, 284-286.

(S7) A. J. Lucio and S. K. Shaw, Anal. Bioanal. Chem., 2018, 410, 4575-4586.

(S8) V. M.-W. Huang, V. Vivier, I. Frateur, M. E. Orazem, B. Tribollet, J. *Electrochem. Soc.* 2007, **154**, C89-C98.

(S9) Y. Geng, S. Chen, T. Wang, D.Yu, C. Peng, H. Liu, Y. Hu, J. Mol. Liq. 2008, 143, 100-108.