Supporting Information

A Highly Selective Naphthalimide Based Ratiometric Fluorescence Probe for Recognition of Tyrosinase and Cellular Imaging

Jagpreet Singh Sidhu†, Ashutosh Singh, ††Neha Garg††, Navneet Kaur*, Narinder Singh†*

† Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India

‡Department of Chemistry, Panjab University, Chandigarh 160014, India

††School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh-175005, India

*Corresponding author (Narinder Singh) E-mail: nsingh@iitrpr.ac.in; Tel: +91-1881242176

(Navneet Kaur) E-mail: navneetkaur@pu.ac.in
Fig. S1: (A) Fluorescence excitation spectra of probe L3. (B) Fluorescence emission spectra of probe L3 in 10% ACN in PBS ($\lambda_{ex} = 425$ nm, $\lambda_{em} = 467$ nm).

Fig. S2: (A) Fluorescence response (F_{535}/F_{467}) of the probe at different pH. (B) Fluorescence stability study of the probe L3 on exposure to UV light at a different time interval.
Fig. S3: (A) Fluorescence response of probe in the presence of tyrosinase (150 U mL⁻¹) at different pH. (B) Effect of temperature on fluorescence response of probe in the presence of tyrosinase (150 U mL⁻¹).

Fig. S4: Fluorescence emission plot of probe L3 (10 μM) vs. reaction time (0-160 min.) at different concentration of tyrosinase (0- 150 U mL⁻¹). Experiments were performed at 37 °C in PBS (10% ACN pH 7.4) with λₑₓ = 425 nm.
Fig. S5: (A) Kinetic parameter study for the calculation of K_m. (B) Fluorescence emission spectra of Probe L3 in response to tyrosinase in 1:99 (v/v) DMSO/PBS.

Fig. S6: Mass spectra of L3 solution in the presence of tyrosinase. Peak correspondence to m/z at 317.14 indicate the breakage of carbamate linkage and release of free 4-aminonaphthalimide derivative (L2).
Fig. S7: (A) Fluorescence emission profile of probe at different reaction conditions. (B) Fluorescence intensity ratio of probe at F_{535}/F_{467}. (a) Probe (b) Probe + Tyrosinase (c) Probe + Tyrosinase + Kojic acid (100 μM) (d) Probe + Tyrosinase + Kojic acid (200 μM)

Fig. S8: Cytotoxicity Assay of Probe L3.
Table. S1: Fluorescence sensor for the detection of Tyrosinase with a different detection limit

<table>
<thead>
<tr>
<th>Method</th>
<th>Limit of Detection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoclusters of gold</td>
<td>6 U L(^{-1})</td>
<td>1</td>
</tr>
<tr>
<td>RF-QDs-DA</td>
<td>10 U L(^{-1})</td>
<td>2</td>
</tr>
<tr>
<td>Cyanine</td>
<td>0.01 U mL(^{-1})</td>
<td>3</td>
</tr>
<tr>
<td>Pdots@Tyr-OMe</td>
<td>1.1 U L(^{-1})</td>
<td>2</td>
</tr>
<tr>
<td>Dopa-CQDs</td>
<td>17 U L(^{-1})</td>
<td>2</td>
</tr>
<tr>
<td>CDs-Tyr</td>
<td>10.2 U mL(^{-1})</td>
<td>4</td>
</tr>
<tr>
<td>Resofuran</td>
<td>0.04 U mL(^{-1})</td>
<td>5</td>
</tr>
<tr>
<td>Naph-L3</td>
<td>0.2 U mL(^{-1})</td>
<td>This work</td>
</tr>
</tbody>
</table>

Fig. S9: \(^1\)HNMR of L2
Fig. S10: 13CNMR of L2

Fig. S11: 1HNMR of Probe L3
Fig. S12: 13CNMR of Probe L 3

Fig. S13: HRMS of Probe L3
References: