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DLS measurement and CD measurement

The size distribution in an aqueous buffered solution (1 mM Tris, pH 7.0) was 

measured using a laser diffraction particle size analyzer (ELSZ, Otsuka Electronics, 

Osaka, Japan). The measurements were carried out by 90° dynamic light scattering at 25 

̊C.

Circular dichroism experiments were performed using JASCO 815 CD 

spectropolarimeter (Jasco, Tokyo, Japan). All the data were collected from 600 to 350 nm 

at a scan rate of 100 nm/min at 0.5 nm data intervals and are presented as an average of 

three successive scans unless specified.

Determination of detection limit and dissociation constant

The detection limit of 1 to Al3+ was calculated based on a fluorescence titration. To 

determine the S/N ratio, the fluorescence emission intensity ratio (I600/I535) of 5 μM of 1 

in aqueous solutions was measured 10 times, and the standard deviation of the blank 

measurements was determined. Three separate measurements of the emission intensity 

ratio were measured in the presence of increasing Al3+ concentrations, and the mean 

intensity ratio was plotted as a function of the Al3+ concentration to determine the slope. 

The detection limit was calculated using the following equation: 

Detection limit = 3σ/m

where σ is the standard deviation of the intensity ratio of 1 in the absence of Al3+, and m 

is the slope of the emission intensity ratio (I600/I535) of 5 μM of 1 as a function of the Al3+ 

concentration.1

The dissociation constant was calculated based on the titration curve of the probe 

with metal ion. The fluorescence signal, F, is related to the equilibrium concentration of 

the complex (HL) between Host (H) and metal ion (L) by the following expression:

F = Fo + ΔF × [HL] 

[HL] = 0.5× [KD + LT + HT – {(- KD - LT - HT)2-4 LT HT}1/2]

where Fo is the fluorescence of the probe only and ΔF is the change in fluorescence due to 

the formation of HL. The dissociation constant was determined by a nonlinear least 

square fit of the data with the equation.2 The dissociation constant was calculated based 

on fluorescence titration curve of the probe with the metal ion using the modified Benesi-

Hildebrand equation. The dissociation constant was calculated using the following 

equation.3,4 

Log(Ix-I0/Imax-I0) = n×log[M]- logKd

where I0 is the fluorescence of the probe only, I is the change in fluorescence due to the 

formation of complex, Imax is the final fluorescence emission intensity, M is the 

concentration of Al3+ ions, and n is the slope.
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 Measurement of Quantum yields 

Fluorescence quantum yields of 1 in the presence and absence of Al3+ were obtained by 

using fluorescein as a standard. Each of the sample solution were prepared in distilled 

water and the absorbance were recorded in 10 mM tris buffer solution in different 10 mm 

quartz cell. The fluorescence spectrums of the solutions were recorded with the excitation 

wavelength of 470 nm and the relative fluorescence was determined by the area of the 

fluorescence emission. Where fluorescein used as a standard and its known quantum yield 

value is 0.91.5 Finally, quantum yield of 1 in the absence and presence of Al3+ were 

calculated.6

Transmission Electron Microscopy (TEM) measurements 

Transmission electron microscopy (TEM) was performed using a Philips CM 200 

operated at an acceleration voltage of 120 kV. The sample was prepared by dropping 5 

μL of the complex of 1 and Al3+ on a 300-mesh copper grid coated with carbon followed 

by staining with phosphotungstic acid (1 wt%). TEM grids were completely dried in 

vacuum desiccator before TEM measurements.
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Fig. S1. HPLC chromatogram of 4
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[4 + Na+]+

Calculated Mass = 430.1196
Observed Mass = 430.1199

Fig. S2. HRMS (ESI-TOF) spectrum of 4
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Fig. S3. 1H NMR of 4
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Fig. S4. 13C NMR of 4
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Fig. S5. HPLC chromatogram of 1
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[1 + Na+]+

Calculated Mass = 544.1625
Observed Mass = 544.1629

Fig. S6. HRMS (ESI-TOF) spectrum of 1
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Fig. S7. 1H NMR of 1
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Fig. S8. 13C NMR of 1
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Fig. S9. Intensity ratio change (I600/I535) of 1 (5 μM) as a function of Al3+ in aqueous buffered solution (10 mM Tris, 
pH 7.0) (λex = 470 nm).



S17

500 550 600 650 700 750
0

20

40

60

80

100

 

In
te

ns
ity

Wavelength (nm)
500 550 600 650 700 750

0

20

40

60

80

100

 

 

In
te

ns
ity

Wavelength (nm)

(a) (b)

0 20 40 60 80 100
0.0
0.5
1.0
1.5
2.0
2.5

I 60
0/I

53
5

[Al3+] M
0 20 40 60 80 100

0.0

0.5

1.0

1.5

I 60
0/I

53
5

[Al3+] M

500 550 600 650 700 750
0

10

20

30

40

50

60

 

 

In
te

ns
ity

Wavelength (nm)

0 20 40 60 80
0.4
0.8
1.2
1.6
2.0

I 60
0/I

53
5

[Al3+] M

(c)

Fig. S10. Fluorescence emission spectra of 1 (5 μM) with increasing concentration of Al3+ in the presence of (a) 
Cu2+ (12 equiv), (b) Cr3+ (12 equiv) and (c) Fe3+ (12 equiv) in aqueous buffered solution (10 mM Tris, pH 7.0).  



S18

0 20 40 60 80
20
30
40
50
60
70
80
90

100
110

 

 

 

[Al3+]

I 5
35

Equation y = P4+P3*((P1+x+P2)-sqrt(((P1+x+P2)^2)-4*P1*x)
)/2

Adj. R-Square 0.9504
Value Standard Error

B P1 5 0
B P2 18.53021 4.1168
B P3 -19.06002 1.30045
B P4 104.21 0

Fig. S11. Non-linear least-squares fitting of the emission intensity of 1 (5 μM) with increasing concentration of Al3+ 
in aqueous buffered solution (10 mM Tris, pH 7.0).
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Figure S12. Benesi-Hildebrand plot for determination of the binding stoichiometry and binding constant of 1 (5 μM) 
for Al3+ in aqueous buffered solution (10 mM Tris, pH 7.0). Emission intensity at 535 nm was used in the plot.
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Fig. S13. Fluorescence emission spectra of 1 (5 μM) with Al3+ (12 equiv) in the presence of increasing concentration 
of EDTA in aqueous buffered solution (10 mM Tris, pH 7.0) (λex = 470 nm, slit = 12/10 nm).
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Fig. S15. UV-vis absorption spectra of 1 (5 μM) upon the gradual addition of Al3+ (0-80 μM) in aqueous buffered 
solution (10 mM Tris, pH 7.0).



S23

420 nm

470 nm

500 550 600 650 700 750
0

20
40
60
80

100
120
140
160

In
te

ns
ity

Wavelength (nm)

 1
 1+ Al3+

500 550 600 650 700 750
0

20
40
60
80

100
120
140
160

In
te

ns
ity

Wavelength (nm)

 1
 1+Al3+

430 nm
440 nm

450 nm 460 nm

500 550 600 650 700 750
0

20
40
60
80

100
120
140
160

In
te

ns
ity

Wavelength (nm)

 1
 1+Al3+

500 550 600 650 700 750
0

20
40
60
80

100
120
140
160

In
te

ns
ity

Wavelength (nm)

 1
 1+Al3+

500 550 600 650 700 750
0

20
40
60
80

100
120
140
160

In
te

ns
ity

Wavelength (nm)

 1
 1+ Al3+

500 550 600 650 700 750
0

20
40
60
80

100
120
140
160

In
te

ns
ity

Wavelength (nm)

 1
 1+ Al3+

Fig. S16. Fluorescence spectra of 1 (5 μM) in the absence and presence of Al3+ (12 equiv) with a different 
excitation wavelength



S24

4000 3500 3000 2500 2000 1500 1000

0.0

0.2

0.4

0.6

0.8

1.0

 

 

Tr
an

sm
itt

an
ce

 

Wavenumber (cm-1)

 1
 1+Al(III)

Fig. S17.  IR spectra of 1 in the absence and presence of Al3+.



S25

500 550 600 650 700 750
0

30

60

90

120

150

 

 

In
te

ns
ity

Wavelength (nm)

0 20 40 60 80
0

30

60

90

120  I535

 I600

In
te

ns
ity

[Al3+] M

Fig. S18. Fluorescence spectra of 1 (5 μM) with increasing concentration of Al3+ in aqueous buffered solution (10 
mM Hexamine buffer, pH 6.0).
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Fig. S20. Fluorescence emission spectra of 1 (5 μM) with increasing concentration of Al3+ (0−65 μM) in aqueous 
buffered solution (10 mM Tris, pH 7.0) containing (a) 10 % (v/v) tap water and (b) 10 % (v/v) ground water (λex = 
470 nm).
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Fig. S22. Fluorescence emission spectra of 1 (5 μM) with Al3+ (12 equiv) in the presence of amino 

acids (100 μM) and biothiols (100 μM).
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Fig. S23. Fluorescence emission spectra of 1 (5 μM) in the presence of Al3+ (12 equiv) with 

increasing concentration of (a) Cys, (b) Hcy, and (c) GSH.  
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Fig. S24. Emission intensity ratio changes of 1 (5 μM) by Al3+ (12 equiv) in the presence of (a) 

citric acid with Fe3+ and (b) citric acid with Zn2+.  
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Fig. S27. MTT assay for the viability of MDA-MB-231 cells in DMEM 10% FBS treated with 1, 1 + Al(NO3)3 and 
1 + Al(NO3)3 + EDTA for 24 h. The results are based on three separate MTT assays. The concentration of  1, 
Al(NO3)3 and EDTA is 10 μM, 50  μM and 200 μM, respectively.
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