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DLS measurement and CD measurement

The size distribution in an aqueous buffered solution (1 mM Tris, pH 7.0) was
measured using a laser diffraction particle size analyzer (ELSZ, Otsuka Electronics,
Osaka, Japan). The measurements were carried out by 90° dynamic light scattering at 25
C.

Circular dichroism experiments were performed using JASCO 815 CD
spectropolarimeter (Jasco, Tokyo, Japan). All the data were collected from 600 to 350 nm
at a scan rate of 100 nm/min at 0.5 nm data intervals and are presented as an average of
three successive scans unless specified.

Determination of detection limit and dissociation constant

The detection limit of 1 to Al3" was calculated based on a fluorescence titration. To
determine the S/N ratio, the fluorescence emission intensity ratio (Iggo/Is3s) of 5 uM of 1
in aqueous solutions was measured 10 times, and the standard deviation of the blank
measurements was determined. Three separate measurements of the emission intensity
ratio were measured in the presence of increasing Al** concentrations, and the mean
intensity ratio was plotted as a function of the AI*" concentration to determine the slope.

The detection limit was calculated using the following equation:
Detection limit = 36/m

where ¢ is the standard deviation of the intensity ratio of 1 in the absence of AI’*, and m
is the slope of the emission intensity ratio (Igoo/Is35) of 5 uM of 1 as a function of the AI3*
concentration.!

The dissociation constant was calculated based on the titration curve of the probe
with metal ion. The fluorescence signal, F, is related to the equilibrium concentration of

the complex (HL) between Host (H) and metal ion (L) by the following expression:
F=F, + AF x [HL]
[HL] = 0.5% [Kp + Ly + Hy— {(- Kp - Lt - Hr)*>-4 Ly Hr} ']

where F, is the fluorescence of the probe only and AF is the change in fluorescence due to
the formation of HL. The dissociation constant was determined by a nonlinear least
square fit of the data with the equation.? The dissociation constant was calculated based
on fluorescence titration curve of the probe with the metal ion using the modified Benesi-
Hildebrand equation. The dissociation constant was calculated using the following

equation.3*
Log(Ix-Io/Iimax-1o) = nxlog[M]- logKy

where [ is the fluorescence of the probe only, I is the change in fluorescence due to the
formation of complex, I,.x is the final fluorescence emission intensity, M is the

concentration of A’ ions, and n is the slope.
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Measurement of Quantum yields

Fluorescence quantum yields of 1 in the presence and absence of Al’" were obtained by
using fluorescein as a standard. Each of the sample solution were prepared in distilled
water and the absorbance were recorded in 10 mM tris buffer solution in different 10 mm
quartz cell. The fluorescence spectrums of the solutions were recorded with the excitation
wavelength of 470 nm and the relative fluorescence was determined by the area of the
fluorescence emission. Where fluorescein used as a standard and its known quantum yield
value is 0.91.° Finally, quantum yield of 1 in the absence and presence of Al** were
calculated.®

Transmission Electron Microscopy (TEM) measurements

Transmission electron microscopy (TEM) was performed using a Philips CM 200
operated at an acceleration voltage of 120 kV. The sample was prepared by dropping 5
uL of the complex of 1 and Al*" on a 300-mesh copper grid coated with carbon followed
by staining with phosphotungstic acid (1 wt%). TEM grids were completely dried in

vacuum desiccator before TEM measurements.
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Fig. S1. HPLC chromatogram of 4
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+MS, 0.1-0.4min #3-22

Intens. +MS, 0.1-0.4min #3-22
x105
3j [4 + Nat]*
b 4301198
2] Calculated Mass = 430.1196
i Observed Mass = 430.1199
] 350.1145
0 e ; = ; ; )
100 200 300 400 500 600 700 800 m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma #Sigma Score rdb e Conf N-Rule
430.1199 1 C20H16N20S 430.1193 1.5 57 1 10000 175 even ok
2 C19H20N505S 430.1180 46 78 2 4147 125 even ok
3 C24H20N303S 430.1220 47 18.1 3 3244 165 even ok
4 C18H24NOYS 430.1166 - 19.2 4 10.00 7.5 even ok
5 C17H20N90S2 4301227 6.3 212 5 2132 125 even ok
6 C16H24N50552 4301213 -32 273 6 52.40 75 even ok
7 C19H28NO453 4301175 5.7 443 s 15.26 6.5 even ok
§ C16H32NO454 430.1209 -2.1 64.0 8 233 15 even ok
1 C18H17N9NaOS 430.1169 71 58 1 1530 145 even ok
2 C22H21N3NaO3Ss 430.1196 0.8 74 2 100.00 135 even ok
3 C19H25N3Na03S2  430.1230 70 23.0 3 14.19 85 even ok
4 C27THZ1NNaOS 430.1236 -8.5 30.0 4 489 175 even ok

Fig. S2. HRMS (ESI-TOF) spectrum of 4
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Fig. S5. HPLC chromatogram of 1
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+MS, 0.3-0.5min #19-28

Intens. ] +MS, 0.3-0.5min #19-28)
x105;
20? 1+ 1V§:l+]+
153 544.1629
e s Calculated Mass = 544.1625
1.0 g =
E 4083083 Observed Mass = 544.1629
22 697.6567
O‘O: o B I - .I.‘ Ll : A i ; TR i‘ i IBZ?IZOTZI ——— J
100 200 300 400 500 600 700 800 900 m/z
Meas. miz # lon Formula miz err[ppm] mSigma #Sigma Score rdb e Conf N-Rule
544 1629 1 C29H22N90S 544 1663 -6.1 35 1 1711 235 even ok
2  C2BH2BN5055 544 1649 36 T4 2 5283 185 even ok
3 C27H30NO9S 544 1636 1.2 178 3 10000 135 even ok
4 C3MTH30NO4Ss2 544 1611 -34 244 4 4024 175 even ok
5  C28H34NO453 544 1644 28 41.8 5 3366 125 even ok
1 C3MH27N3NaO35 5441665 6.6 41 1 1477 195 even ok
2 C27H23N9NaOs 544 1638 -1.7 85 2 9771 205 even ok
3  C26H27TNS5MNa05s 544.1625 08 194 3 10000 155 even ok
4 C25H31NNa09s 544 1612 33 276 4 4714 105 even ok
5 C26H35NNa0O453 544 1620 -1.7 411 5 57.91 95 even ok

Fig. S6. HRMS (ESI-TOF) spectrum of 1
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Fig. S7. ' HNMR of 1
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Fig. S8. 3C NMR of 1
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Fig. S9. Intensity ratio change (Ioo/Is35) of 1 (5 pM) as a function of AI** in aqueous buffered solution (10 mM Tris,
pH 7.0) (Aex = 470 nm).
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Fig. S10. Fluorescence emission spectra of 1 (5 uM) with increasing concentration of AI** in the presence of (a)
Cu?* (12 equiv), (b) Cr3* (12 equiv) and (c) Fe3* (12 equiv) in aqueous buffered solution (10 mM Tris, pH 7.0).
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110

4 Equation y = P4+P3*((P1+x+P2)-sqrt(((P1+x+P2)"2)-4*P1*x)
)2
100+
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Fig. S11. Non-linear least-squares fitting of the emission intensity of 1 (5 uM) with increasing concentration of Al3*
in aqueous buffered solution (10 mM Tris, pH 7.0).
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Figure S12. Benesi-Hildebrand plot for determination of the binding stoichiometry and binding constant of 1 (5 pM)
for AI** in aqueous buffered solution (10 mM Tris, pH 7.0). Emission intensity at 535 nm was used in the plot.
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Fig. S13. Fluorescence emission spectra of 1 (5 uM) with AI3* (12 equiv) in the presence of increasing concentration
of EDTA in aqueous buffered solution (10 mM Tris, pH 7.0) (Aex = 470 nm, slit = 12/10 nm).
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Fig. S14. Partial "H NMR spectra (400 MHz) of 1 (5 mM) with increasing concentration of AI** in DMSO-dy/D,0

(v/v =4:1) containing 10 mM ammonium formate.
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Fig. S15. UV-vis absorption spectra of 1 (5 uM) upon the gradual addition of AI3* (0-80 uM) in aqueous buffered
solution (10 mM Tris, pH 7.0).
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Fig. S16. Fluorescence spectra of 1 (5 uM) in the absence and presence of AI3* (12 equiv) with a different

excitation wavelength
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Fig. S17. IR spectra of 1 in the absence and presence of Al**.
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Fig. S18. Fluorescence spectra of 1 (5 M) with increasing concentration of Al** in aqueous buffered solution (10
mM Hexamine buffer, pH 6.0).
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Fig. S19. Linear relationship between the emission intensity ratio (Isgo/Is35) of 1 (5 pM) and the concentration of Al3*
(0-5000 nM) in aqueous buffered solution (10 mM Tris, pH 7.0).
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Fig. S20. Fluorescence emission spectra of 1 (5 uM) with increasing concentration of AI** (0—65 uM) in aqueous
buffered solution (10 mM Tris, pH 7.0) containing (a) 10 % (v/v) tap water and (b) 10 % (v/v) ground water (Aex =
470 nm).
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Fig. S21. Linear relationship between the emission intensity ratio (Isgo/Is35) of 1 (5 pM) and the concentration of Al3*
(0-5000 nM) in aqueous buffered solution (10 mM Tris, pH 7.0) containing 10 % (v/v) tap water and 10% (v/v)
groundwater, respectively.
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Fig. $22. Fluorescence emission spectra of 1 (5 uM) with AI3* (12 equiv) in the presence of amino

acids (100 uM) and biothiols (100 uM).
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Fig. $23. Fluorescence emission spectra of 1 (5 pM) in the presence of AI3* (12 equiv) with

increasing concentration of (a) Cys, (b) Hey, and (c) GSH.
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Fig. $24. Emission intensity ratio changes of 1 (5 uM) by AI** (12 equiv) in the presence of (a)

citric acid with Fe3* and (b) citric acid with Zn?*.
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Fig. $25. Emission intensity ratio changes of 1 (5 uM) by AI** (12 equiv) in the presence of exatie

aetd and Fe’'.
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Fig. $26. Emission intensity ratio changes of 1 (5 uM) by AI** (12 equiv) in the presence of ATP

and Fe3" .
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Fig. S27. MTT assay for the viability of MDA-MB-231 cells in DMEM 10% FBS treated with 1, 1 + AI(NO;); and
1+ AI(NOs); + EDTA for 24 h. The results are based on three separate MTT assays. The concentration of 1,
AI(NO;); and EDTA is 10 uM, 50 puM and 200 uM, respectively.
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