A ratiometric photoelectrochemical immunosensor based on g-C₃N₄@TiO₂ NTs amplified by signal antibodies-Co₃O₄ nanoparticles conjugates

Qiong Wu, Fengxia Zhang, Huijuan Li, Zhihua Li, Qi Kang, and Dazhong Shen*

a College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China

b College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China

*Corresponding author. Tel.: +86 0531 86180740; fax: +86 053182615258.
E-mail address: dzshen@sdnu.edu.cn (D. Shen).
1. Preparation of carboxylated g-C$_3$N$_4$

The carboxylated g-C$_3$N$_4$ was prepared according to the method in ref. [S1]. Briefly, 5 g melamine were heated at 550 °C in air for 4 h to obtain g-C$_3$N$_4$ yellow powder. Then 0.5 g of bulk g-C$_3$N$_4$ powder were dispersed in 50 mL of ultrapure water and sonicated for 1 h in a round bottom flask. After adding of 50 mL concentrated HNO$_3$, the mixture were refluxed in slight boiling for 24 h. Cooled to room temperature, the supernatant was collected by centrifugation and washed with ultrapure water until pH neutral. Finally, the resulting product was dried by vacuum and ground carefully to obtain the carboxylated g-C$_3$N$_4$.

1. Preparation of TiO$_2$ NTs array

TiO$_2$ NTs were fabricated by the electrochemically anodizing Ti foil in the fluorine-containing electrolyte according to the method according to a previous paper [S2]. Briefly, Ti foils (2.0×1.0 cm2) were pretreated by ultrasonic cleaning in acetone, ethanol and ultra-pure water and then dried in nitrogen stream. Then the Ti foil was immersed in an electrolyte solution containing 98 mL ethylene glycol, 0.33 g NH$_4$F and 2 mL of ultra-pure water. The electrochemical anodizing was performed in a two-electrode cell at a constant 30 V anodic potential for 2 h at room temperature, with a graphite plate as the counter electrode. Finally, the Ti foils were directly heated to 550 C at a rate of 5 °C min$^{-1}$ and then kept at this temperature for another 3 h in a muffle furnace to prepare TiO$_2$ NTs photoanodes.

3 Preparation of Ab$_2$–Co$_3$O$_4$ conjugates

The preparation process of Ab$_2$–Co$_3$O$_4$ conjugates is shown in Scheme S1.
Scheme S1. Construction process of the Ab$_2$-Co$_3$O$_4$ NPs.

Firstly, ZIF-67 crystals were synthesized by a simple room-temperature precipitation reaction [S3]. In a typical synthesis, 4 mmol of Co(NO$_3$)$_2$ and 16 mmol of mIm were respectively dissolved in 100 mL of methanol. The methanol solution of Co(NO$_3$)$_2$ was slowly added to the methanol solution of mIm. The resultant mixture was stirred for 6 h and the solids were collected by centrifugation. Washed with methanol for several times to remove excess mIm present on the surface and pores, the ZIF-67 crystals were dried overnight in the ventilation oven. Secondly, a combustion boat loaded the ZIF-67 powders was directly placed in a tube furnace. The temperature inside the furnace was gradually increased from room temperature to 500 °C with a heating rate of 2 °C min$^{-1}$. After annealed at 500 °C for 3 h under air, the porous Co$_3$O$_4$ powder were formed by the decomposition and oxidation of ZIF-67. Thirdly, the 50 mg of Co$_3$O$_4$ powder were ground carefully in an agate mortar and dispersed in 20 mL 0.1% MSA aqueous solution. After ultrasonication for 20 min, the carboxylated Co$_3$O$_4$ NPs were acquired by centrifugation and washed several times with ultrapure water. Finally, the carboxylated Co$_3$O$_4$ NPs were re-dispersed in 5 mL phosphate buffer and stored at 4 °C for use.

The synthetic procedure of Ab$_2$-Co$_3$O$_4$ conjugates were prepared according to the method in ref. [S4] with slight modification. Firstly, 200 μL of newly prepared EDC (10 mg mL$^{-1}$) and NHS (10 mg mL$^{-1}$) solutions were mildly mingled with 1 mL of carboxylated Co$_3$O$_4$ NPs
suspension (0.2 mg mL\(^{-1}\)) for 30 min at room temperature. The supernatant was removed by centrifugation. Then 1 mL of Ab\(_2\) solution (200 µg mL\(^{-1}\)) was added and incubated for 12 h under shaking at 4°C. After washing with phosphate buffer solution (PBS, pH 7.4, 0.081 M \(\text{Na}_2\text{HPO}_4 + 0.019 \text{ M NaH}_2\text{PO}_4 + 0.1 \text{ M NaCl}\)) several times, the resultant Ab\(_2\)–Co\(_3\)O\(_4\) NPs conjugates were acquired by centrifugation, re-dispersed to 1 mL PBS and stored at 4 °C for the further use.

4 Construction of PEC Immunosensor

Firstly, 30 µL of newly prepared EDC (10 mg mL\(^{-1}\)) and NHS (10 mg mL\(^{-1}\)) solutions was scattered onto the electrode to activate the carboxyl groups on C-g-C\(_3\)N\(_4\)@TiO\(_2\) NTs for 30 min at room temperature. The electrode was covered with 30 µL 2% (v/v) ethylenediamine (En) for 30 min to form En-g-C\(_3\)N\(_4\)@TiO\(_2\) NTs. Then, En-g-C\(_3\)N\(_4\)@TiO\(_2\) NTs was rinsed with water and dried with N\(_2\). Subsequently, 30 µL of newly prepared EDC (10 mg mL\(^{-1}\)) and NHS (10 mg mL\(^{-1}\)) solutions was scattered onto the electrode again to activate the amino groups on En-g-C\(_3\)N\(_4\)@TiO\(_2\) NTs for 30 min at room temperature. Afterward, 30 µL of 100 µg mL\(^{-1}\) Ab\(_1\) and allowed to incubate at 4 °C for at least 12 h. After being rinsed with the washing buffer solution (PBS, pH 7.4, 10 mM), the electrode was incubated with 20 µL of 10 mM PBS (pH 7.4) containing 1% (w/v) BSA at 37 °C for 30 min to block nonspecific binding sites and then rinsed with the washing buffer solution thoroughly. The sensing photoelectrode of Ab\(_1\)-En-g-C\(_3\)N\(_4\)@TiO\(_2\) NTs was obtained. For the purpose of concision, the term of Ab\(_1\)-En-g-C\(_3\)N\(_4\)@TiO\(_2\) NTs is simplified as Ab\(_1\)-g-C\(_3\)N\(_4\)@TiO\(_2\) NTs. Next, 30 µL of different concentrations of target Ag was dropped on the BSA blocked electrode for an incubation of 1 h at 37 °C followed by washing with washing buffer solution. After specific
immunoreaction between Ab₁ and Ag, the electrode was allowed for labeling by additional incubation with 20 μL of Ab₂-Co₃O₄ conjugates solution for 1 h at 37 °C. Eventually, the resulting electrode was washed carefully with washing buffer solution and introduced into the photocurrent test. Similarly, the reference photoelectrode of BSA-g-C₃N₄@TiO₂ NTs was prepared by immobilizing BSA using EDC/NHS reaction.

Fig. S1 FTIR of carboxylated Co₃O₄ NPs (A) and g-C₃N₄ (B).
Fig. S2 UV-vis absorbance spectra of carboxylated g-C$_3$N$_4$ and Co$_3$O$_4$ NPs.

Fig. S3 SEM images of ZIF-67 (A) and Co$_3$O$_4$ (B) powders.
Fig. S4 X-ray powder diffraction (XRD) patterns of ZIF-67, Co$_3$O$_4$ NPs and carboxylated g-C$_3$N$_4$.

ZIF-67

Co$_3$O$_4$ NPs

g-C$_3$N$_4$
<table>
<thead>
<tr>
<th>Immunoprobs *</th>
<th>Methods **</th>
<th>Linear range (ng mL⁻¹)</th>
<th>LoD (ng mL⁻¹)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au NPs-Ab₂-AFP-Ab₁</td>
<td>ICP-MS</td>
<td>0.005–2.0</td>
<td>0.002</td>
<td>S5</td>
</tr>
<tr>
<td>MnFe₂O₄-Ab₁-AFP-Ab₁- MnFe₂O₄</td>
<td>Paramagnetic</td>
<td>1–500</td>
<td>0.3</td>
<td>S6</td>
</tr>
<tr>
<td>AFP-Ab₁-SiNB</td>
<td>FETs</td>
<td>3–100</td>
<td>2</td>
<td>S7</td>
</tr>
<tr>
<td>CuO-Ab₂-AFP-Ab₁</td>
<td>Fluorescence</td>
<td>1–80</td>
<td>0.45</td>
<td>S9</td>
</tr>
<tr>
<td>CuO-Ab₂-AFP-Ab₁</td>
<td>Fluorescence</td>
<td>0.025–5</td>
<td>0.012</td>
<td>S10</td>
</tr>
<tr>
<td>Hemin-Au@MOF-Ab₂-AFP-Ab₁</td>
<td>Colorimetric</td>
<td>0.08–43</td>
<td>0.02</td>
<td>S11</td>
</tr>
<tr>
<td>Ab₁-AFP-Ab₂-PbS NPs</td>
<td>RLS</td>
<td>3×10⁻⁴–1</td>
<td>1×10⁻⁴</td>
<td>S4</td>
</tr>
<tr>
<td>PAADs@CNDs@Ab₂-AFP-Ab₁-GO@C₆₀</td>
<td>ECL</td>
<td>1×10⁻⁶–80</td>
<td>3.3×10⁻⁷</td>
<td>S12</td>
</tr>
<tr>
<td>AFP-Ab₁-AuNPs/Ru(bpy)₃²⁺</td>
<td>ECL</td>
<td>0.05–50</td>
<td>0.04</td>
<td>S13</td>
</tr>
<tr>
<td>AFP-Ab₁-HAP@GO</td>
<td>EC</td>
<td>0.01–10</td>
<td>0.005</td>
<td>S14</td>
</tr>
<tr>
<td>Pt@CuO-MWCNTs/Ab₂-AFP -Ab₁-CD-GS</td>
<td>EC</td>
<td>0.001–20</td>
<td>3.3×10⁻⁴</td>
<td>S15</td>
</tr>
<tr>
<td>Co₃O₄@MnO₂-thionine</td>
<td>EC</td>
<td>0.001–100</td>
<td>3.3×10⁻⁴</td>
<td>S16</td>
</tr>
<tr>
<td>AFP-Ab₁-Au-ZnO</td>
<td>PEC</td>
<td>0.005–50</td>
<td>5.6×10⁻⁴</td>
<td>S17</td>
</tr>
<tr>
<td>HRP-Ab₂-AFP- Ab₁-CdS/WS₂</td>
<td>PEC</td>
<td>0.001–20</td>
<td>4.3×10⁻⁴</td>
<td>S18</td>
</tr>
<tr>
<td>Co₃O₄-Af₂-AFP-g-C₃N₄@TiO₂</td>
<td>PEC</td>
<td>4×10⁻⁴–40</td>
<td>2×10⁻⁴</td>
<td>This work</td>
</tr>
</tbody>
</table>

*Au@MPTES-GS:3-mercaptopropyltriethoxysilane functionalized graphene sheets, CD-GS: β-cyclodextrin functionalized graphene, GO: graphene oxide, HRP: horseradish peroxidase, PAADs@CNDs poly(amidoamine) dendrimers functionalized carbon nanodots, SiNB: silicon nanobelt.

References

