Reversible Fluorescence Modulation of BSA Stabilised Copper Nanoclusters for the Selective Detection of Protamine and Heparin

R.S. Aparna¹, J.S. Anjali Devi¹, R.R Anjana¹, John Nebu¹, Sony George*¹

¹Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram-695581, Kerala, India

*Corresponding Author

* Phone:+919446462933, Email: emailtosony@gmail.com

Supporting Information

Fig.S.1 Photographs showing (a) BSA Copper complex (b) BSA-CuNCs under day light.

Fig.S.2 The excitation (yellow line) and emission spectra (blue line) of BSA-CuNCs at room temperature (λ_{ex} 330 nm, λ_{em} 410 nm). The inset photographs show BSA-CuNCs (a) under daylight (b) under UV light (365 nm).

Fig.S.3 Fluorescence emission spectra of CuSO₄, BSA-CuNCs and NaOH in aqueous solution at room temperature (λ_{ex} 330 nm, λ_{em} 410 nm).

Fig.S.4 Fluorescence stability of BSA CuNCs after 30 days of storage at 4^{0} C (λ_{ex} 330 nm, λ_{em} 410 nm).

Fig.S.5 The DLS size distribution of BSA-CuNCs. Size obtained is 4.2 nm.

Fig.S.6 Zeta potential analysis of BSA-CuNCs. Surface charge of BSA-CuNCs obtained is -24 mV.

Fig.S.7 The time response curve of BSA- CuNCs, protamine added BSA-CuNCs and heparin added BSA-CuNCs/PR system.

Table.S.1 Comparison of the reported fluorescence probe for the selective detection of protamine.

Sensor	Detection limit	Reference
Carbon quantum dot and gold nanoparticle	1.2 ng/mL	1
Glutathione capped CdTe quantum dot	1.0 ng/mL	2
Gold nanoparticle coupled with fluorophore	0.0067 μg/mL	3
Silicon dot coupled with gold nanoparticle	6.7 ng/mL	4
FITC labelled DNA	2.2 ng/mL	5
BSA-CuNCs	0.12 ng/mL	Present method

Fig.S.8 The hydrodynamic size of protamine added BSA-CuNCs. Size obtained is 279.04 nm.

Fig.S.9 The zeta potential analysis of protamine added BSA-CuNCs. Surface charge obtained is -8.3 mV.

Fig.S.10 Effect of pH on the fluorescence intensity of BSA-CuNCs, Protamine added BSA-CuNCs and Heparin added BSA-CuNCs/PR system at room temperature (λ_{ex} 330 nm, λ_{em} 410 nm).

Fig.S.11 (a) Selectivity of BSA-CuNCs over other co-existing cations such as Zn(II), Fe(III), Ca(II), Cu(II), Mn(II), Fe(II) and Na(II) (b) Sensitivity of BSA-CuNCs/ PR system over other co-existing cations. (λ_{ex} 330 nm, λ_{em} 410 nm). Probe 1 represents BSA-CuNCs. Concentration of all cations was kept as 100 μ M.

Fig.S.12 (a) Selectivity of BSA-CuNCs over other co-existing anions **(b)** Sensitivity of BSA-CuNCs/ PR system over other co-existing anions such as Cl⁻, SO₄²⁻, PO₄²⁻ and NO₃⁻ (λ_{ex} 330 nm, λ_{em} 410 nm). Probe 1 represents BSA-CuNCs. Concentration of all anions was kept as 100 μ M.

Fig.S.13 The hydrodynamic size of heparin added BSA-CuNCs/PR system. Size obtained is 9.3 nm.

Fig.S.14 The zeta potential analysis of heparin added BSA-CuNCs/PR system. Surface charge obtained is -17.3 mV.

Fig.S.15 (a) Photographs of BSA-CuNCs, **(b)** BSA- CuNCs/PR system, **(c)** BSA-CuNCs/PR after addition of heparin under day light.

Sensor	Detection limit	Reference
Silicon quantum dot coupled with gold nanoparticle	0.67 ng/mL	4
Cysteamine capped gold nanoparticle	0.03 μg/mL	6
Thioglycolic acid capped CdTe quantum dot	0.033 μg/mL	7
Gold nanoparticle on grapheme oxide	3.0 ng/mL	8
Emissive H aggregate of Thioflavin T	18 nM	9
4-MPY functionalized silver nanoparticles	0.5 ng/mL	10
BSA CuNC/PR system	0.041 ng/mL	Present method

Table.S.2 Comparison of the reported detection methods for the selective detection of heparin.

Table.S.3 Nanosecond time resolved luminescent transients of BSA CuNCs, BSA CuNCs/PR system, heparin added BSA CuNCs/PR system. Pulsed excitation of 330 nm is used to measure the decay profile.

System	$\tau_1(ns)$	$ au_2$ (ns)	$ au_{av}(ns)$
BSA CuNC	1.49 (24.10%)	7.70 (75.90%)	7.28
BSA CuNC + PR	1.47 (24.72%)	7.87 (75.28%)	7.50
BSA CuNC + PR + HP	1.45 (23.95%)	7.56 (76.05%)	7.21

Fig.S.16 (a) Selectivity of BSA-CuNCs/PR system over other co-existing cations such as Zn(II), Fe(III), Ca(II), Cu(II), and Mn(II) (b) Sensitivity of heparin added BSA-CuNCs/ PR system over other co-existing cations (λ_{ex} 330 nm, λ_{em} 410 nm). Probe 2 represents BSA-CuNCs/PR. Concentration of all cations was kept as 100 μ M.

Fig.S.17 (a) Selectivity of BSA-CuNCs/PR system over other co-existing anions (b) Sensitivity of heparin added BSA-CuNCs/ PR system over other co-existing anions such as Cl⁻, SO₄²⁻, PO₄²⁻ and NO₃⁻ (λ_{ex} 330 nm, λ_{em} 410 nm). Probe 2 represents BSA-CuNCs/PR. Concentration of all anions was kept as 100 μ M.

References

- 1 H. Rao, H. Ge, X. Wang, Z. Zhang, X. Liu, Y. Yang, Y. Liu, W. Liu, P. Zou and Y. Wang, *Microchim. Acta*, 2017, **184**, 3017–3025.
- A. A. Ensafi, N. Kazemifard and B. Rezaei, *Biosens. Bioelectron.*, 2015, 71, 243–248.
- J. Zhao, Y. Yi, N. Mi, B. Yin, M. Wei, Q. Chen, H. Li, Y. Zhang and S. Yao, *Talanta*, 2013, **116**, 951–957.
- 4 X. Peng, Q. Long, H. Li, Y. Zhang and S. Yao, *Sens. Actuators B: Chem.*, 2015, **213**, 131–138.
- 5 S. Pang, S. Liu and X. Su, *RSC Adv.*, 2014, 4, 25857–25862.
- 6 R. Cao and B. Li, *Chem. Commun.*, 2011, 47, 2865–2867.
- 7 H. Z. Zhang, R. S. Li, N. Wang, L. Qi, C. Z. Huang and J. Wang, *Anal. Methods*, 2016, **8**, 453–459.
- 8 X. Fu, L. Chen and J. Li, *Analyst*, 2012, **137**, 3653–3658.
- 9 N. H. Mudliar and P. K. Singh, ACS Appl. Mater. Interfaces, 2016, 8, 31505–31509.
- 10 X. Wang, L. Chen, X. Fu, L. Chen and Y. Ding, *ACS Appl. Mater. Interfaces*, 2013, **5**, 11059–11065.