Supporting Information

Fabrication and evaluation of molecularly imprinted magnetic nanoparticles for selective recognition and magnetic separation of lysozyme in human urine

Zulei Zhanga*, Hongmei Wanga, Hailong Wanga, Cuichen Wub, c, Mengli Lia, Lei Lia*

a School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
b Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, College of Life sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
c Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States

*Corresponding author: Dr. Zulei Zhang, Professor Lei Li
Email: jerry3641172@126.com, lei.li@mail.zjxu.edu.cn
Fax: +86-573-83646203; Tel: +86-573-83646203
1. Equations

The pseudo-first-order equation is generally expressed as:

$$\ln(Q_e - Q_t) = \ln Q_e - k_1 t$$ \hspace{1cm} (1)

The pseudo-second-order equation is generally expressed as:

$$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{t}{Q_e}$$ \hspace{1cm} (2)

where t (min) is adsorption time; Q_t (mg/g) and Q_e (mg/g) are the amounts of the adsorbed Lyz at time t (min) and at equilibrium, respectively; k_1 is the rate constant of the pseudo-first-order adsorption model, k_2 (g/(mg min)) represents the pseudo-second-order adsorption rate constant.

2. Supporting data

![Diameter distribution of Fe$_3$O$_4$, Fe$_3$O$_4$@SiO$_2$ and Lyz-MMIPs by DLS technique](image)

Fig.S1 Diameter distribution of Fe$_3$O$_4$, Fe$_3$O$_4$@SiO$_2$ and Lyz-MMIPs by DLS technique
Fig.S2 XPS high-resolution scan of Si2p of Lyz-MMIPs

Fig.S3 The effects of (A) NaCl concentrations (desorption period: 12 h, solution volume: 20 mL, pH: 7.0) and (B) desorption period (NaCl concentration: 1.0 mol/L, solution volume: 20 mL, pH: 7.0) on the desorption of Lyz from Lyz-MMIPs
Fig.S4 UV-vis spectrograms of human urine samples

Table S1 Comparison with reported method for the adsorption capacity of Lyz

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>Preparation method</th>
<th>Adsorption capacity (mg/g)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₃O₄@Lyz-MIP</td>
<td>surface imprinting</td>
<td>11.87</td>
<td>1</td>
</tr>
<tr>
<td>MIP</td>
<td>precipitation polymerization</td>
<td>22.50</td>
<td>2</td>
</tr>
<tr>
<td>PVC-MIP</td>
<td>surface imprinting</td>
<td>38.46</td>
<td>3</td>
</tr>
<tr>
<td>Lyz-MIP</td>
<td>surface imprinting</td>
<td>90.33</td>
<td>4</td>
</tr>
<tr>
<td>Fe₃O₄@MIP</td>
<td>surface imprinting</td>
<td>103.1</td>
<td>5</td>
</tr>
<tr>
<td>Fe₃O₄@SiO₂-MIP</td>
<td>surface imprinting</td>
<td>108.0</td>
<td>6</td>
</tr>
<tr>
<td>Lyz-MMIPs</td>
<td>surface imprinting</td>
<td>124.3</td>
<td></td>
</tr>
</tbody>
</table>

References