Supplemental Information for

Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes

Hiroyuki Shibata, Yuki Hiruta, Daniel Citterio*

Department of Applied Chemistry, Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

*To whom correspondence should be addressed.

Tel: +81 45 566 1568; Fax: +81 45 566 1568; Email: citterio@applc.keio.ac.jp

Table of Contents

Preparation procedure of nano-optode suspension S					
Figure S1	Size of prepared nano-optodes measured with DLS				
Figure S2	Schematic illustration of wax barrier pattern	S4			
Figure S3	Procedure for obtaining colorimetric response profiles along a detection channel of colour-developed μ PADs				
Experimental procedure of complexometric titration to quantify Ca ²⁺ in water samples					
Figure S4	Optimisation of printing cycles for deposition of nano-optodes	S 7			
Figure S5	Wax barrier tolerance against leakage of sample liquid	S 8			
Figure S6	Optimisation of printing cycles for deposition of pH-buffering reagents	S9			
Figure S7	Optimisation of printing cycles for deposition of MgCl ₂	S9			
Figure S8	Scanned images for optimisation of MgCl2 printing cycles	S10			
Figure S9	Statistical comparison between different batches of fabricated μ PADs	S11			
Figure S10	Statistical comparison of Ca^{2+} assay results with distance-based μ PADs between software-assisted readout and readouts by individual observers	S12			
Figure S11	Quantification of Ca ²⁺ with commercial paper dipsticks	S13			
Table S1	Lowest concentration of Ca ²⁺ detectable with commercial dipsticks	S14			
Figure S12	Scanned images of Ca^{2+} -selective μ PADs for selectivity evaluation	S15			
Figure S13	Competitive interference study using Na ⁺ and Mg ²⁺	S16			
Figure S14	Evaluation of adsorption of Ca ²⁺ to paper substrate	S17			
Figure S15	Statistical comparison between Ca^{2+} measurements by distance-based μ PADs and complexometric titration	S18			
Table S2	Observer tests for visual Ca ²⁺ quantification in practical assays	S19			

Preparation of ion-selective optode nanosphere (nano-optode) suspension

4.28 mg of NaTFPB (sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), 1.68 mg of CH1 (chromoionophore I), 3.2 mg of DOS (bis(2-ethylhexyl) sebacate), 3.0 mg of F127 (Pluronic[®] F-127) and 3.90 mg of calcium ionophore IV were dissolved in 1.2 mL of THF to obtain a homogeneous solution. 1.0 mL of this prepared cocktail was injected into 4.5 mL of deionized water on a vortex with a spinning speed of 1000 r/min, followed by organic solvent removal with a stream of N₂ gas for 40 min. The suspension of nano-optodes contained nanosphere particles of approximately 200 nm in diameter with a polydispersity index (PDI) of 0.273. This solution was directly used for inkjet printing without any further processing.

Figure S1. Hydrodynamic diameter of the prepared nano-optodes measured by dynamic light scattering (DLS).

Figure S2. Schematic illustration of the wax barrier patterns printed on an A4-size filter paper sheet. The dimensions in the red box represent the settings in the PowerPoint graphic software.

Figure S3. Procedure for obtaining colorimetric response profiles along a detection channel of colour-developed μ PADs; after extraction of the red colour channel from a scanned image, the "smoothing" function of Image J was applied.

Experimental procedure of complexometric titration for quantifying the amounts of Ca²⁺ in drinking or tap waters

Approximately 5 mL of 8 N KOH was added into 50 mL of the water sample (\approx pH 13), followed by stirring for several minutes. Next, approximately 0.1 mg of NN (2-hydroxy-1-(2-hydroxy-4-sulfo-1-naphthylazo)-3-naphthoic acid) indicator was added into the pretreated sample solution and titrated with 0.01 N EDTA solution (*f* = 1.001). The endpoint of the complexometric titration was defined as the required volume of EDTA solution to obtain a colorimetric change of the NN indicator from dark red to blue.

Figure S4. (a) Design of the developed distance-based μ PADs for evaluation of the amount of nano-optodes: actual scanned image of a μ PAD (left) and the corresponding dimensions (right). (b) Scanned images of distance-based μ PADs with different amounts of printed nano-optodes (number of printing cycles: 4, 5, 7, 10, 12, 15, 20 and 25) 45 min after application of 30 μ L of pH-buffered (50 mmol L⁻¹ HEPES-TMAOH buffer pH 7.0) 1.0 mmol L⁻¹ Ca²⁺ solution.

Figure S5. Evaluation of wax barrier resistance against the presence of surfactants: 30 μ L of aqueous solution containing a food dye (0.02wt% acid red) was applied to an unlaminated μ PAD containing surfactant (F-127) micelles printed from a magenta cartridge at 20 cycles to mimic the conditions found in Ca²⁺-selective distance-based μ PADs; the F-127 micelle ink suspension was prepared according to the same procedure as described for the preparation of Ca²⁺-selective nano-optodes, however without the addition of sensing reagents (ionophore, chromoionophore, ion-exchanger).

<u>Blank</u>

Figure S6. Evaluation of amounts of pH-buffering reagents (250 mmol L⁻¹ HEPES-TMAOH buffer pH 7.0) printed onto the inlet areas and the flow channels of μ PADs (printing cycles of pH-buffering reagents: 1, 2, 3, 5 cycles); 30 μ L of blank (pure H₂O) or 1 mmol L⁻¹ aqueous CaCl₂ solution was applied onto a μ PAD.

Figure S7. Evaluation of the amounts of MgCl₂ printed onto the inlet area of μ PADs (printing cycles of MgCl₂: 0, 1, 3, 5 cycles); each data point has been obtained by measurements with 4 individual single-use distance-based μ PADs; 30 μ L of aqueous CaCl₂ solution was applied onto a μ PAD; error bars indicate the standard deviations; incubation time: 45 min.

Figure S8. (a) Scanned images and (b) extracted red channel of distance-based μ PADs with different amounts of printed MgCl₂ (number of printing cycles: 3, 5, 7) 45 min after application of 30 μ L of blank sample (water) and 1.0 mmol L⁻¹ Ca²⁺ solution.

Figure S9. Comparison between different batches of fabricated μ PADs; the underlying data is identical to Fig. 4a in the main text.

Figure S10. Comparison of Ca^{2+} assay results with distance-based µPADs between softwareassisted readout and readouts by two individual observers; the underlying data is identical to Fig. 4b in the main text.

Figure S11. (a) Assay procedure applied for commercial colorimetric paper dipstick for Ca^{2+} according to the attached user manual; (b) Scanned images of the commercial test strips after exposure to the corresponding Ca^{2+} concentrations.

Observer #		Concent	ration of Ca ²⁺ [n	ımol L ⁻¹]	
Observer #	0	0.05	0.1	0.2	0.3
#1	-	-	\checkmark	✓	\checkmark
#2	-	-	1	1	1
#3	-	-	1	1	1
#4	-	-	✓	1	✓

Table S1. Determination of the lowest naked-eye detectable Ca²⁺ concentration with commercial paper dipsticks.

"-" and " \checkmark " stand for "unobservable colour change" and "observable colour change", respectively, read out by 4 independent users; before comparing each sample exposed dipstick to a reference dipstick (*i.e.* exposed to blank), the colour code reference of the user manual was used for user instruction.

Figure S12. Scanned images of Ca²⁺-selective μ PADs exposed to the corresponding various cation concentrations for selectivity evaluation based on visual recognition; 30 μ L of sample solutions prepared as chloride salts were applied onto μ PADs; incubation time: 45 min.

Competitive interference study using Na⁺ and Mg²⁺

30 μ L of aqueous Ca²⁺ sample (1 mmol L⁻¹) containing various concentrations of Na⁺ or Mg²⁺ (0, 0.5, 1, 3 and 5 mmol L⁻¹) was applied onto the fabricated Ca²⁺-selective μ PAD. After the incubation for 45 min under ambient condition, the generated distance-based signal was quantified with ImageJ software in the same manner as for Ca²⁺ assays demonstrated in section 2.4 of the main text.

Figure S13. Result of Ca^{2+} concentration readout in the presence of potentially interfering cations (Na⁺ and Mg²⁺). The amount of Ca²⁺ was fixed at 1 mmol L⁻¹, whereas the amount of the interfering cations was varied (from 0 mmol L⁻¹ to 5 mmol L⁻¹); each data point has been obtained by measurements with 4 individual single-use distance-based µPADs; error bars indicate the standard deviations.

Evaluation of the adsorption of Ca²⁺ onto paper substrates

30 μ L of pH-buffered Ca²⁺ samples (50 mmol L⁻¹ HEPES-TMAOH buffer, pH 7.0) was applied onto a reagent-free paper channel (device design is shown in Fig. S4a), followed by incubation for 45 min. Then, Ca²⁺-selective nano-optodes were inkjet-printed onto the paper devices exposed to various concentrations of Ca²⁺ samples at 20 printing cycles. After inkjet printing, colorimetric signals were captured with a colour scanner.

Figure S14. Software-assisted response curve to estimate the adsorption of Ca^{2+} onto the paper substrate; each data point has been obtained by measurements with 3 individual single-use devices; 30 µL of aqueous CaCl₂ solution applied; error bars indicate the standard deviations; incubation time: 45 min.

Figure S15. (a) Comparison between Ca^{2+} measurements by distance-based µPADs and complexometric titration; the plots and error bars represent the average and standard deviations of 4 (µPADs) and 3 (titration) repetitions; (b) Bland-Altmann analysis for eight Ca^{2+} samples quantified by µPADs and complexometric titration; the underlying data is identical to Table 2 in the main text.

Table S2. Errors in naked-eye quantification of Ca^{2+} in unspiked or spiked tap water by untrained observers compared to ImageJ software-assisted readout results; different batches of μ PADs were used for data shown in parts (a) and (b) of the table; the data represent the mean and standard deviations of 3 independent readouts by a total of 24 observers.

Sample	Unspiked [%]	Spiked #1 [%]	Spiked #2 [%]	Spiked #3 [%]
Observer #1	$+8{\pm}3$	0±1	0±0	-6±0
Observer #2	$\pm 1 \pm 0$	$+5\pm2$	$+5\pm4$	-1±0
Observer #3	$+8{\pm}5$	-1±0	+2±3	-4±3
Observer #4	+12±0	$+1\pm4$	+2±3	-1±0
Observer #5	-3±5	-1±0	+2±3	-2±3
Observer #6	+12±0	$+9{\pm}7$	+2±3	-2±3
Observer #7	-3±5	$+4\pm4$	+2±3	-3±3
Observer #8	$+3{\pm}3$	-4±2	+2±1	-3±1
Observer #9	-1±5	-5±3	-1±3	-3±0
Observer #10	-1±3	-1±0	$+3\pm3$	-1±0
Observer #11	+12±5	$+5\pm2$	+2±6	$+1\pm3$
Observer #12	+10±3	+9±2	-4±11	+2±2
Observer #13	$+4{\pm}3$	$+3\pm3$	-1±3	0±1
Observer #14	$+23\pm5$	$+14\pm0$	$+6\pm0$	$+1{\pm}3$

(a)

(b)	

Sample	Unspiked [%]	Spiked #1 [%]	Spiked #2 [%]	Spiked #3 [%]
Observer #15	+12±0	+12±2	$+11\pm5$	$+3\pm0$
Observer #16	+2±4	$+2\pm6$	-2±4	0±3
Observer #17	-11±5	$+1\pm5$	-2±2	-3±3
Observer #18	$+6\pm6$	$+3\pm6$	-3±0	0±3
Observer #19	-11±2	-3±5	-5±2	-4±3
Observer #20	-8±4	-2±3	+2±2	-3±5
Observer #21	$+1\pm2$	$+6\pm5$	0±1	-6±2
Observer #22	-6±2	-1±5	$+1\pm2$	-5±2
Observer #23	$+2\pm8$	$+4\pm8$	$+4\pm0$	0±1
Observer #24	-1±5	$+1\pm5$	0±0	-2±2