Figure S1. The SIMS depth profile of parent C$_{10}$H$_9$O$_4$+ ([M + H]$^+$) at m/z 193 generated with 16 kV Ar$_{1000}^+$ sputtering and various O$_2^+$ cosputtering.
Figure S2. The steady-state ion intensity (normalized with respect to the intensity on pristine surface) of [M+H]⁺ after GCIB-O₂⁺ cosputtering with various parameters versus the sputter rate. The shade of each color (light/normal/dark) represents the usage of 10/15/20 keV GCIB, respectively.
Figure S3. Zero-force AFM images of surfaces sputtered by single GCIB sputtering at fluence of 1.09×10^{16} ion/cm2. Field of view: 5 µm × 5 µm.
Figure S4. Zero-force AFM of surfaces cosputtered by 200 V, 5 µA/cm² O₂⁺ with GCIB fluence of 1.09×10^{16} ion/cm². Field of view: 5 µm × 5 µm.
Figure S5. Zero-force AFM images of surfaces cosputtered by 500 V, 5 µA/cm² O₂⁺ with GCIB fluence of 1.09×10^{16} ion/cm². Field of view: 5 µm × 5 µm.
Figure S6. Zero-force AFM images of surfaces cosputtered by 200 V, 80 µA/cm² O₂⁺ with GCIB fluence of 1.09 × 10¹⁶ ion/cm². Field of view: 5 µm × 5 µm.
Figure S7. The steady-state ion intensity (normalized with respect to the intensity on pristine surface) of [M+H]^+ versus the surface roughness after GCIB-O$_2^+$ cosputtering with various parameters. The shade of each color (light/normal/dark) represents the usage of 10/15/20 keV GCIB, respectively.
Table S1. Sputter rate, relative intensity, Young’s modulus and RMS roughness measured with various beam parameters.

<table>
<thead>
<tr>
<th>E/n</th>
<th>GCIB (kV, n)</th>
<th>O₂ beam (V, µA/cm²)</th>
<th>Sputter rate (nm/min)</th>
<th>Relative intensity (a.u.)</th>
<th>Young’s modulus (GPa)</th>
<th>RMS roughness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>10, 4000</td>
<td>0, 0</td>
<td>2.00</td>
<td>0.02±0.03</td>
<td>2.50±0.26</td>
<td>4.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 5</td>
<td>2.05</td>
<td>0.26±0.03</td>
<td>2.42±0.13</td>
<td>4.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 5</td>
<td>2.13</td>
<td>0.28±0.08</td>
<td>2.23±0.21</td>
<td>7.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 80</td>
<td>2.84</td>
<td>0.31±0.06</td>
<td>2.74±0.36</td>
<td>8.30</td>
</tr>
<tr>
<td>3.75</td>
<td>15, 4000</td>
<td>0, 0</td>
<td>2.58</td>
<td>0.57±0.08</td>
<td>1.96±0.18</td>
<td>6.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 5</td>
<td>2.76</td>
<td>0.55±0.07</td>
<td>2.03±0.27</td>
<td>3.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 5</td>
<td>3.42</td>
<td>0.82±0.17</td>
<td>1.64±0.26</td>
<td>4.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 80</td>
<td>3.68</td>
<td>1.29±0.16</td>
<td>2.22±0.34</td>
<td>3.92</td>
</tr>
<tr>
<td>4</td>
<td>10, 2500</td>
<td>0, 0</td>
<td>2.51</td>
<td>0.53±0.07</td>
<td>2.29±0.22</td>
<td>5.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 5</td>
<td>2.98</td>
<td>0.49±0.11</td>
<td>2.27±0.17</td>
<td>3.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 5</td>
<td>3.15</td>
<td>0.29±0.09</td>
<td>2.18±0.14</td>
<td>7.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 80</td>
<td>4.56</td>
<td>0.31±0.08</td>
<td>2.66±0.36</td>
<td>9.43</td>
</tr>
<tr>
<td>5</td>
<td>20, 4000</td>
<td>0, 0</td>
<td>4.08</td>
<td>0.59±0.08</td>
<td>1.95±0.18</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 5</td>
<td>4.99</td>
<td>0.55±0.16</td>
<td>1.89±0.28</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 5</td>
<td>6.02</td>
<td>1.31±0.33</td>
<td>1.84±0.13</td>
<td>4.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 80</td>
<td>7.16</td>
<td>1.15±0.18</td>
<td>2.11±0.12</td>
<td>3.43</td>
</tr>
<tr>
<td>6</td>
<td>15, 2500</td>
<td>0, 0</td>
<td>4.48</td>
<td>0.57±0.11</td>
<td>1.84±0.23</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 5</td>
<td>5.38</td>
<td>0.65±0.18</td>
<td>1.90±0.26</td>
<td>3.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 5</td>
<td>6.95</td>
<td>1.10±0.15</td>
<td>1.59±0.27</td>
<td>4.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 80</td>
<td>9.28</td>
<td>1.22±0.09</td>
<td>2.02±0.16</td>
<td>3.78</td>
</tr>
<tr>
<td>8</td>
<td>20, 2500</td>
<td>0, 0</td>
<td>9.92</td>
<td>0.60±0.03</td>
<td>1.79±0.13</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 5</td>
<td>10.2</td>
<td>0.77±0.05</td>
<td>1.69±0.25</td>
<td>4.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 5</td>
<td>11.0</td>
<td>1.17±0.28</td>
<td>1.67±0.10</td>
<td>5.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 80</td>
<td>13.2</td>
<td>1.10±0.01</td>
<td>1.92±0.18</td>
<td>4.33</td>
</tr>
<tr>
<td>10</td>
<td>10, 1000</td>
<td>0, 0</td>
<td>9.03</td>
<td>0.48±0.13</td>
<td>1.93±0.22</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 5</td>
<td>9.85</td>
<td>0.65±0.07</td>
<td>1.89±0.23</td>
<td>5.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 5</td>
<td>10.5</td>
<td>0.79±0.09</td>
<td>1.73±0.13</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 80</td>
<td>12.8</td>
<td>1.07±0.01</td>
<td>1.89±0.27</td>
<td>3.84</td>
</tr>
<tr>
<td>15</td>
<td>15, 1000</td>
<td>0, 0</td>
<td>11.7</td>
<td>0.62±0.07</td>
<td>1.52±0.10</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 5</td>
<td>12.5</td>
<td>0.76±0.17</td>
<td>1.67±0.11</td>
<td>4.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 5</td>
<td>24.5</td>
<td>0.81±0.11</td>
<td>1.26±0.24</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 80</td>
<td>27.5</td>
<td>0.92±0.15</td>
<td>1.73±0.12</td>
<td>4.44</td>
</tr>
<tr>
<td>20</td>
<td>20, 1000</td>
<td>0, 0</td>
<td>1.58</td>
<td>0.003±0.00</td>
<td>14.2±0.72</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 5</td>
<td>1.32</td>
<td>0.005±0.00</td>
<td>19.1±1.26</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 5</td>
<td>0.94</td>
<td>0.004±0.03</td>
<td>22.5±1.96</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200, 80</td>
<td>1.54</td>
<td>0.022±0.01</td>
<td>20.5±2.30</td>
<td>0.70</td>
</tr>
</tbody>
</table>