Supporting Information

Determination of Cu$^{2+}$ and biothiols by the novel red fluorescent hybrid nanoparticles

Ling Zhanga, Zizhun Wanga, Jiaze Houa, Lulu Leia, Jiao Lia, Juan Baia, Hui Huanga,*
Yongxin Lib

aCollege of Food Science and Engineering, Jilin University, Changchun 130025, China.
bState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

*Corresponding author.
Tel.: +86-431-85094968
E-mail address: huanghui@jlu.edu.cn
Fig. S1. DLS distribution of the NPG@PFBD nanoparticles.

Fig. S2. Stability of the NPG@PFBD nanoparticles. (a) fluorescence intensity of new synthetic sample, fluorescence intensity of the same sample after 10 days. (b) photobleaching curves of NPG@PFBD nanoparticles.
Fig. S3. The relationship between the fluorescence intensity of the NPG@PFBD nanoparticles and the reaction time in the presence of 50 µM Cu$^{2+}$ and 50 µM GSH.

Fig. S4. The relationship between the Er and pH in the presence of NPG@PFBD nanoparticles and 50 µM Cu$^{2+}$ and 50 µM GSH.
Fig. S5. The relationship between the Er and reaction temperature in the presence of NPG@PFBD nanoparticles and 50 μM Cu^{2+} and 50 μM GSH.