Click chemistry-based core-shell molecularly imprinted polymers for the determination of pyrimethamine in fish and plasma samples

Shuyi Huang,* Manli Guo,* Lei Tan,* Jiean Tan,* Jinyi Wu,* Youwen Tang,* Yong Liang*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

*a School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China. Fax: +86-020-36545137; Tel: +86-020-36545121; E-mail: liangy@scnu.edu.cn

b Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China. Fax: +86-020-36545137; Tel: +86-020-36545121; E-mail: jsutanlei@gmail.com

Table S1 Comparison of the proposed method with other established methods for the determination of pyrimethamine.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample preparation</th>
<th>Linear range</th>
<th>LOD</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>HPLC-MS</td>
<td>protein precipitation</td>
<td>0.02–5 μg/mL</td>
<td>nd</td>
</tr>
<tr>
<td>Plasma</td>
<td>HPLC-MS</td>
<td>protein precipitation</td>
<td>0.01–1.0 μg/mL</td>
<td>0.5 ng/mL</td>
</tr>
<tr>
<td>plasma</td>
<td>HPLC-MS/MS</td>
<td>liquid-liquid extraction</td>
<td>0.78–400 ng/mL</td>
<td>0.39 ng/mL</td>
</tr>
<tr>
<td>Plasma</td>
<td>HPLC-MS</td>
<td>liquid-liquid extraction</td>
<td>5–30 ng/mL</td>
<td>1.12 ng/mL</td>
</tr>
<tr>
<td>Milk</td>
<td>HPLC-MS/MS</td>
<td>solid-phase extraction</td>
<td>1.0–300 ng/mL</td>
<td>0.51 ng/mL</td>
</tr>
<tr>
<td>Milk</td>
<td>HPLC-MS</td>
<td>solid-phase extraction</td>
<td>nd</td>
<td>0.5 ng/mL</td>
</tr>
<tr>
<td>Formulations</td>
<td>HPLC</td>
<td>Filtration</td>
<td>0.2–4 μg/mL</td>
<td>60 μg/L</td>
</tr>
<tr>
<td>Pharmaceutical formulations</td>
<td>RP-HPLC</td>
<td>Dilution</td>
<td>0.5–3.0 mg/L</td>
<td>0.01 μg/mL</td>
</tr>
<tr>
<td>Pharmaceutical formulations</td>
<td>UV</td>
<td>complexation reaction</td>
<td>0–100 mg/L</td>
<td>5 μg/mL</td>
</tr>
<tr>
<td>equipment surfaces</td>
<td>HPLC</td>
<td>Dilution</td>
<td>0.129–4.02 μg/mL</td>
<td>0.042 μg/mL</td>
</tr>
<tr>
<td>feeds</td>
<td>HPLC</td>
<td>liquid-liquid extraction</td>
<td>2–5 μg/g</td>
<td>nd</td>
</tr>
<tr>
<td>Animal tissue/egg</td>
<td>HPLC</td>
<td>liquid-liquid extraction</td>
<td>0.01–1 μg/kg</td>
<td>10 ng/g</td>
</tr>
<tr>
<td>Whole blood</td>
<td>HPLC</td>
<td>solid-phase extraction</td>
<td>1–10 μg/mL</td>
<td>0.6 μg/mL</td>
</tr>
<tr>
<td>Serum and Urine</td>
<td>Acoustic wave</td>
<td>Molecularly imprinted</td>
<td>14.9–24.87 mg/L</td>
<td>4.96 mg/L</td>
</tr>
<tr>
<td>Fish muscles</td>
<td>HPLC</td>
<td>liquid-liquid extraction</td>
<td>0–0.05 μg/g</td>
<td>0.005 mg/kg</td>
</tr>
<tr>
<td>Fish/plasma/urine</td>
<td>HPLC</td>
<td>Molecularly imprinted</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>


10. M. B. Bocaa, Z. Apostolides, E. Pretorius, A validated HPLC method for determining residues of a dual active ingredient anti-malarial drug on


