Reaction-Based Fluorescent Probes for rapid detection of hydrogen sulfide in vivo

Xilang Jin\(a,b\), Xianglong Wu\(b\), Pu Xie\(a\), Sha Liu\(c\), Jie Wu\(a\), Ting Wang\(a\), Hongwei Zhou\(a,∗\), Xin Leng\(d\), Weixing Chen\(a,∗\)

Xilang Jin and Xianglong Wu contributed equally to this work.

\(a\) School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710032, PR China

\(b\) Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China

\(c\) Beijing Petrochemical Engineering Co., Ltd. Xi'an Subsidiary, Xi'an, Shaanxi 710075, PR China

\(d\) Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, PR China

‘Corresponding author at: School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi China

Tel.: +86 029 86173324; Fax: +86 029 86173324. E-mail: jinxilang_911@163.com

CONTENTS

1. Spectroscopic properties of probe 1-2 \(S2\)

2. \(^1\)H NMR and MS spectra \(S12\)
1. Spectroscopic properties of probe 1-2

Figure S1. Fluorescence intensity of 1a (5.0 μM) in the absence and presence of 2.0 equiv. of H₂S in water solution with different pH conditions, λex = 400 nm.

Figure S2. Fluorescence responses of probe 1a (5.0 μM) upon addition of different esterases in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃) solution. Carboxylesterase 1 (CE1, 10.0 μg/mL), carboxylesterase 2(CE2, 10.0 μg/mL), acetylcholinesterase (AChE, 0.1 μg/L), butyrylcholinesterase (BChE, 20.0 U/L), paraoxonase 1 (PON1, 10.0 μg/mL), paraoxonase 2 (PON2, 10.0 μg/mL) and human serum albumin (HAS, 0.5 mg/L), bovine serum albumin (BSA, 0.5 mg/L). The pillars in the front row: probe 1a (5.0 μM) + various biologically relevant species. The pillars in the back row: probe 1a (5.0 μM) + NaHS (10.0 μM) + other biologically relevant species. λex = 400 nm.
Figure S3. Fluorescence spectra of probe 1b (10.0 µM) towards different concentration of NaHS (0.0-40.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH$_3$COCH$_3$). λ_{ex} = 350 nm.

Figure S4. Plots of fluorescence intensity ratio $I_{488/455}$ towards different concentration of NaHS (0.0-20.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH$_3$COCH$_3$). λ_{ex} = 350 nm.
Figure S5. Selectivity of probe 1b for NaHS (20.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃) solution. The pillars in the front row represent the value of fluorescence intensity ratio I₄₈₈/₄₅₅ in the presence of various analytes. The pillars in the back row indicate the change in the fluorescence intensity ratio I₄₈₈/₄₅₅ upon subsequent addition of NaHS (20.0 µM) to the solution containing probe 1b and the respective analytes. λₑₓ = 350 nm.

Figure S6. Time-dependent emission ratio changes observed for probe 1b (10.0µM) upon interaction with NaHS (20.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃). λₑₓ = 350 nm.
Figure S7. Fluorescence intensity of 1b (10.0 μM) in the absence and presence of 2.0 equiv. of H₂S in water solution with different pH conditions, λex= 350 nm.

Figure S8. Fluorescence responses of probe 1b (10.0 μM) upon addition of different esterases in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃) solution. Carboxylesterase 1 (CE1, 10.0 μg/mL), carboxylesterase 2 (CE2, 10.0 μg/mL), acetylcholinesterase (AChE, 0.1 μg/L), butyrylcholinesterase (BChE, 20.0 U/L), paraoxonase 1 (PON1, 10.0 μg/mL), paraoxonase 2 (PON2, 10.0 μg/mL) and human serum albumin (HAS, 0.5 mg/L), bovine serum albumin (BSA, 0.5 mg/L). The pillars in the front row: probe 1b (10.0 μM) + various biologically relevant species. The pillars in the back row: probe 1b (10.0 μM) + NaHS (20.0 μM) + other biologically relevant species. λex = 350 nm.
Figure S9. Fluorescence spectra of probe 2a (10.0 μM) towards different concentration of NaHS (0.0-40.0 μM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃). λₑₓ = 350 nm.

Figure S10. Plots of fluorescence intensity towards different concentration of NaHS (0.0-20.0 μM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃). λₑₓ = 350 nm.
Figure S11. Selectivity of probe 2a for NaHS (20.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1% CH₃COCH₃) solution. The pillars in the front row represent the value of fluorescence intensity in the presence of various analytes. The pillars in the back row indicate the change in the fluorescence intensity upon subsequent addition of NaHS (20.0 µM) to the solution containing probe 2a and the respective analytes. λ_{ex} = 350 nm.

Figure S12. Time-dependent emission ratio changes observed for probe 2a (10.0 µM) upon interaction with NaHS (20.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1% CH₃COCH₃). λ_{ex} = 350 nm.
Figure S13. Fluorescence intensity of 2a (10.0 μM) in the absence and presence of 2.0 equiv. of H₂S in water solution with different pH conditions, λex= 350 nm.

Figure S14. Fluorescence responses of probe 2a (10.0 μM) upon addition of different esterases in PBS buffer (20.0 mM, pH 7.4, 1 % CH₂COCH₃) solution. Carboxylesterase 1 (CE1, 10.0 μg/mL), carboxylesterase 2(CE2, 10.0 μg/mL), acetylcholinesterase (AChE, 0.1 μg/L), butryrylcholinesterase (BChE, 20.0 U/L), paraoxonase 1 (PON1, 10.0 μg/mL), paraoxonase 2 (PON2, 10.0 μg/mL) and human serum albumin (HAS, 0.5 mg/L), bovine serum albumin (BSA, 0.5 mg/L). The pillars in the front row: probe 2a (10.0 μM) + various biologically relevant species. The pillars in the back row: probe 2a (10.0 μM) + NaHS (20.0 μM) + other biologically relevant species. λex = 350 nm.
Figure S15. Fluorescence spectra of probe 2b (10.0 µM) towards different concentration of NaHS (0.0-40.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃). λₑₓ = 350 nm.

Figure S16. Plots of fluorescence intensity towards different concentration of NaHS (0.0-20.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃). λₑₓ = 350 nm.
Figure S17. Selectivity of probe 2b for NaHS (20.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃) solution. The pillars in the front row represent the value of fluorescence intensity in the presence of various analytes. The pillars in the back row indicate the change in the fluorescence intensity upon subsequent addition of NaHS (20.0 µM) to the solution containing probe 2b and the respective analytes. λₑₓ = 350 nm.

Figure S18. Time-dependent emission ratio changes observed for probe 2b (10.0 µM) upon interaction with NaHS (20.0 µM) in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃). λₑₓ = 350 nm.
Figure S19. Fluorescence intensity of 2b (10.0 μM) in the absence and presence of 2.0 equiv. of H₂S in water solution with different pH conditions, λex= 350 nm.

Figure S20. Fluorescence responses of probe 2b (10.0 μM) upon addition of different esterases in PBS buffer (20.0 mM, pH 7.4, 1 % CH₃COCH₃) solution. Carboxylesterase 1 (CE1, 10.0 μg/mL), carboxylesterase 2(CE2, 10.0 μg/mL), acetylcholinesterase (AChE, 0.1 μg/L), butyrylcholinesterase (BChE, 20.0 U/L), paraoxonase 1 (PON1, 10.0 μg/mL), paraoxonase 2 (PON2, 10.0 μg/mL) and human serum albumin (HAS, 0.5 mg/L), bovine serum albumin (BSA, 0.5 mg/L). The pillars in the front row: probe 2b (10.0 μM) + various biologically relevant species. The pillars in the back row: probe 2b (10.0 μM) + NaHS (20.0 μM) + other biologically relevant species. λex = 400 nm.
2. 1H NMR, 13C NMR and MS spectra

Figure S21. 1H NMR spectrum of 3 in DMSO

Figure S22. 1H NMR spectrum of 1a in DMSO
Figure S23. 13C NMR spectrum of 1a in DMF.

Figure S24. 1H NMR spectrum of 1b in DMSO
Figure S25. 13C NMR spectrum of 1b in DMF.

Figure S26. 1H NMR spectrum of 2a in CDCl$_3$
Figure S27. 13C NMR spectrum of 2a in DMF.

Figure S28. 1H NMR spectrum of 2b in CDCl$_3$
Figure S29. 13C NMR spectrum of 2b in DMF.

Mass Spectrum SmartFormula Report

Analysis Info
- **Analysis Name**: C:\Users\Lenovo\Desktop\1
- **Method**: tune_low 50-500.m
- **Sample Name**:
- **Comment**:
- **Acquisition Date**: 2017/6/7 9:38:46
- **Operator**: NWU
- **Instrument / Ser#:** microTOF-Q II 10280

Acquisition Parameter
- **Source Type**: ESI
- **Focus**: Not active
- **Scan Begin**: 50 m/z
- **Scan End**: 1000 m/z
- **Ion Polarity**: Positive
- **Set Capillary**: 4500 V
- **Set End Plate Offset**: -500 V
- **Set Collision Cell RF**: 116.0 Vpp
- **Set Nebulizer**: 0.4 Bar
- **Set Dry Heater**: 180°C
- **Set Dry Gas**: 4.0 l/min
- **Set Divert Valve**: Source

Figure S30. Mass spectrum of 1a
Figure S31. Mass spectrum of 1b

Figure S32. Mass spectrum of 2a
Figure S33. Mass spectrum of 2b

Figure S34. Mass spectrum of 4
Figure S35. 1H NMR spectrum of 4 in DMSO

Figure S36. 1H NMR spectrum of 5 in DMSO