Characterization of low adsorption filter membranes for electrophoresis and electrokinetic sample manipulations in microfluidic paper-based analytical devices

Laura D. Casto, Jennifer A. Schuster, Claire D. Neice, Christopher A. Baker*

Department of Chemistry, University of Tennessee, Knoxville, 552 Buehler Hall, 1420 Circle Dr., Knoxville, TN 37996

Keywords: Paper microfluidics, µPAD, microfabrication, separation, zonal electrophoresis

*Address correspondence to:
Dr. Christopher A. Baker
Department of Chemistry
University of Tennessee, Knoxville
552 Buehler Hall
1420 Circle Dr.
Knoxville, TN 37996
Phone: (865)974-8225
Email: chris.baker@utk.edu
Figure S1. Fluorescence calibration plots.
Blank-subtracted fluorescence calibration plots utilized for detection limit calculations. A. Fluorescein on OE66 B. Fluorescein on PVDF C. Fluorescein on MF D. Nile blue on OE66 E. Nile blue on PVDF F. Nile blue on MF
Figure S2. Representative electropherograms in MF μPADs.
Electropherograms in both TRIS and borate BGEs were irreproducible and complex, but the representative trace here demonstrates their common appearance: a complex peak profile migrating entirely before 4 minutes. We hypothesize this results from relatively high rates of electroosmotic flow which prevents electrophoretic resolution on these time scales. Further device optimization may improve separation performance and reproducibility.