Supporting Information

A novel chemiluminescence signal amplification strategy based on the capillary electrophoresis platform for highly sensitive competitive immunoassay of biomolecules

Min Shi, Jingjin Zhao, Shuting Li,* Jianniao Tian, Shulin Zhao*

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China

Table of contents

Supplementary figures and table

- Figure S1 ..-S2
- Figure S2 ..-S3
- Figure S3 ..-S4
- Figure S4 ..-S5
- Figure S5 ..-S6
- Figure S6 ..-S7
- Figure S7 ..-S8
- Figure S8 ..-S9
- Table S1 ..-S10
Figure S1. SEM image of AuNPs
Figure S2. UV-Vis absorption spectra of AuNPs-MPA prepared by 3-MPA of different concentrations. (a, 0; b, 1.0×10⁻⁹; c, 1.0×10⁻⁸; d, 5.0×10⁻⁸; e, 1.0×10⁻⁷; f, 5.0×10⁻⁷; g, 1.0×10⁻⁶; h, 5.0×10⁻⁶; i, 1.0×10⁻⁵; j, 5.0×10⁻⁵; and k, 1.0×10⁻⁴ M)
Figure S3. Influence of HRP concentration on the CL intensity.
Figure S4. Influence of H$_2$O$_2$ concentration on the CL intensity
Figure S5. Influence of pH of post-column oxidizing reagent on the CL intensity.
Figure S6. Influence of pH of the electrophoresis buffer on the resolution.
Figure S7. Influence of borax concentration on the resolution.
Figure S8. Influence of SDS concentration on the resolution.
Table S1 the sensitivity comparison of different methods for the detection of Te

<table>
<thead>
<tr>
<th>Analysis method*</th>
<th>Linearity range</th>
<th>Detection limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCE-CL</td>
<td>0.576–57.6 ng/mL</td>
<td>0.288 ng/mL</td>
<td>1</td>
</tr>
<tr>
<td>CL-IA</td>
<td>57.6–5760 pg/mL</td>
<td>36 pg/mL</td>
<td>2</td>
</tr>
<tr>
<td>CE-LIF</td>
<td>3.70–2000 ng/mL</td>
<td>1.11 ng/mL</td>
<td>3</td>
</tr>
<tr>
<td>MIA-FD</td>
<td>2500 pg/ml</td>
<td>12 pg/ml</td>
<td>4</td>
</tr>
<tr>
<td>FD</td>
<td>——</td>
<td>1.47 pg/ml</td>
<td>5</td>
</tr>
<tr>
<td>ELISA</td>
<td>——</td>
<td>8.9 pg/mL</td>
<td>6</td>
</tr>
<tr>
<td>ED</td>
<td>300–40000 pg/mL</td>
<td>90 pg/ml</td>
<td>7</td>
</tr>
<tr>
<td>ED</td>
<td>5.0×10^{-3}–50 ng/mL</td>
<td>1.7 pg/mL</td>
<td>8</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>10–2000 ng/mL</td>
<td>10 ng/mL</td>
<td>9</td>
</tr>
<tr>
<td>LC-ESI-MS/MS</td>
<td>1–5000 pg/mL</td>
<td>1 pg/mL</td>
<td>10</td>
</tr>
<tr>
<td>CE-CL-IA</td>
<td>0.2–10 pg/mL</td>
<td>0.11 pg/mL</td>
<td>This work</td>
</tr>
</tbody>
</table>

*MCE-CL, microchip electrophoresis chemiluminescence detection; CL-IA, chemiluminescence immunoassay; CE-LIF, capillary electrophoresis laser-induced fluorescence detection; FD, fluorescence detection; MIA-FD, microsphere-based duplex competitive immunoassay fluorescence detection; ELISA, enzyme linked immunosorbent assay; LC-MS; liquid chromatography-mass spectrometry, ED, electrochemical detection.
References

