Supporting information

Indole–rhodamine-based ratiometric fluorescent probe for Pd$^{2+}$ determination and cell imaging

Wenfeng Luoa,b, Mengmeng Leia,b, Yuan Wangc,*, Haolei Gaob, Yang Wanga,b, Qihang Zhoua,b, Zhihong Xua,b,*, Fengling Yanga,*

a. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
b. Key Laboratory of Chemosensor and Biological Detection, School of Chemistry and Chemical Engineering, Xuchang University, 461000, P. R. China
c. College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China

*Corresponding author. Tel.: +86 374 4369297; e-mail: wangyuan08@hpu.edu.cn (Y. Wang); xuzhihong1980@yahoo.com (Z.-H. Xu); 13903900069@163.com (F.-L. Yang).

Contents

1. The fluorescence intensities ratio (F_{590}/F_{410}) for R1 as a function of Pd$^{2+}$ concentration

2. Job plots of R1 with Pd$^{2+}$

3. The Benesi-Hildebrand plot of the R1-Pd$^{2+}$ complex.

4. ESI-MS spectrum of the probe R1 with Pd$^{2+}$

5. The effect of pH

6. The effect of 1 equiv. coexistent metal cations

7. Time course for the fluorescence response

8. ESI-MS, 1H NMR and 13C NMR spectrum of R1
1. The fluorescence intensities ratio (F_{590}/F_{410}) for $R1$ as a function of Pd$^{2+}$ concentration

![Graph](image1)

Fig. S1 The fluorescence intensities ratio (F_{590}/F_{410}) for $R1$ as a function of Pd$^{2+}$ concentration in CH$_3$OH/PBS (5 mM, pH = 7.40, 50% CH$_3$OH) solution (excited at 330 nm).

2. Job plots of $R1$ with Pd$^{2+}$

![Graph](image2)

Fig. S2 Job plots of $R1$ with Pd$^{2+}$ in CH$_3$OH/PBS (5 mM, pH = 7.40, 50% CH$_3$OH) solution according to the absorbance at 570 nm. The total concentration of $R1$ and Pd$^{2+}$ were all kept at 10 μM.

3. The Benesi-Hildebrand plot of the $R1$-Pd$^{2+}$ complex.
Fig. S3 The Benesi-Hildebrand plot of the R1-Pd$^{2+}$ complex.

4. ESI-MS spectrum of the probe R1 with Pd$^{2+}$
5. The effect of pH

Fig. S4 ESI-MS spectrum of the probe R1 with Pd$^{2+}$ in EtOH solution.

6. The effect of 1 equiv. coexistent metal cations
Fig. S6 The effect of 1 equiv. coexistent metal cations on the relative fluorescence intensity at 410 and 590 nm (excited at 330 nm) of 5 μM R1 with 1 equiv. Pd^{2+} in CH\(_3\)OH/PBS (5 mM, pH = 7.40, 50% CH\(_3\)OH) solution

7. Time course for the fluorescence response

![Graph](image)

Fig. S7 Time course for the fluorescence response at 410 nm and 590 nm (excited at 350 nm) of 5 μM R1 upon the addition of 1.0 eq. Pd^{2+} in CH\(_3\)OH/PBS (5 mM, pH = 7.40, 50% CH\(_3\)OH) solution at room temperature.

8. ESI-MS, \(^1\)H NMR and \(^{13}\)C NMR spectrum of R1
Fig. S8 ESI-MS spectrum of R1 in EtOH solution.

Fig. S9 1H NMR spectrum of R1.
Fig. S10 13C NMR spectrum of R1.