Supporting Information

A Highly Selective and instantaneous responsive Schiff Base

Fluorescent Sensor for the “Turn-off” Detection of Iron(III), Iron(II),

Copper(II) Ions

Xiaoyu Zhu, Yaui Duan, Po Li, Haiming Fan, Tianyu Han and Xiaonan Huang

a. Department of Chemistry, Capital Normal University, 105 West 3rd Ring North Rd,

Beijing 100048, PR China

b. Shandong Provincial Key Laboratory of Oilfield Chemistry, School of Petroleum

Engineering, China University of Petroleum (East China),

Qingdao 266580, Shandong Province, P. R. China

E-mail: huangxn@cnu.edu.cn (X.N. Huang); Haimingfan@126.com
Indexes

Fig. S1 1H NMR (600 MHz, 298 K) spectrum of DBAB in DMSO-d$_6$........................3

Fig. S2 13C NMR (600 MHz, 298 K) spectrum of DBAB in DMSO-d$_6$......................4

Fig. S3 ESI MS spectrum of DBAB...5

Fig. S4 (a) UV–vis spectra , (b) Fluorescence spectra and (c) Colour changes under the UV light irradiation observed of different concentration of DBAB in DMF...........6

Fig. S5 Absorption spectra of DBAB (1.7 μM) in the presence of different metal ions (353 equiv.) in DMF...7

Eq. S1 and Eq. S2 The limit of detection and association constant.................................8
Fig. S1
Fig. S4

(a) Absorbance (a.u.)

(b) Fluorescence Intensity (a.u.)

(c) Images showing varying concentrations of DBAB
The limit of detection and association constant

The limit of detection (LOD) was calculated based on the fluorescence titration according to the following equation (Eq. S1) [1-3], where S_{b_1} is the standard deviation of the blank solution and S is the slope of the calibration curve. To determine S_{b_1}, the emission intensity of DBAB in DMF solution without any metal ions was measured 10 times, respectively.

\[
LOD = 3 \times \frac{S_{b_1}}{S}
\]
(Eq. S1)

The association constant (Ka) of DBAB-metal ion was obtained from nonlinear curve fitting of the fluorescence titration data according to Benesi-Hildebrand equation (Eq. S2) [4-6], where F_0, F, and F_{min} are the fluorescence intensity of DBAB in the absence of metal ions, at a certain concentration of metal ions, and the minimum fluorescence intensity of [QLBM-Fe$^{3+}$/Fe$^{2+}$/Cu$^{2+}$] in the linear range, $[M]$ is the metal ion concentration, n is the binding stoichiometry.

\[
\log\left[\frac{F_{\text{max}} - F}{F - F_0}\right] = n \log[M] + \log K_a
\]
(Eq. S2)
References

