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(a) (b)

Figure S1. Dynamic light scattering (DLS) and electrokinetic analyses of LAPONITE®-gelatin 

(LP-G) suspensions, yielding hydrodynamic size (a) and ζ-potential (b). At a constant gelatin 

concentration, increasing LAPONITE® concentration (e.g., 2% compared to 1%, Figure 1c), 

increases the hydrodynamic size of LAPONITE®-gelatin particles as a result of polymer-mediated 

nanoplatelet bridging. The stable size of particles suggests that the gelatin-stabilized LAPONITE® 

clusters form a stable colloidal suspension. 
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Figure S2. Images of LAPONITE®, gelatin, and different compositions of LAPONITE®-gelatin 

mixtures. (a-1) LAPONITE® (6 wt%) in Milli-Q water, (a-2) Gelatin (2 wt%) in Milli-Q water, 

(a-3) Gelatin (2 wt%) in PBS, (a-4) Gelatin (2 wt%) in DMEM. STBs prepared by mixing (b-1) 

LAPONITE® (6 wt%) in Milli-Q water and gelatin (2 wt%) in Milli-Q water, (b-2): LAPONITE® 

(6 wt%) in Milli-Q water and gelatin (2 wt%) in PBS, and (b-3) LAPONITE® (6 wt%) in Milli-Q 

water and gelatin (2 wt%) in DMEM. STBs prepared by mixing (c-1) LAPONITE® (12 wt%) in 

Milli-Q water and gelatin (6 wt%) in Milli-Q water (1:1), (c-2) LAPONITE® (12 wt%) in Milli-Q 

water and gelatin (6 wt%) in PBS, and (c-3) LAPONITE® (12 wt%) in Milli-Q water and gelatin 

(6 wt%) in DMEM.
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Figure S3. Images of nanocomposites prepared by mixing (1:1 v/v) water-dispersed LAPONITE® 

(2 wt%) with gelatin (0.1 wt% in PBS or DMEM). The dispersions undergo phase separation.
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LAPONITE®, T=37°C
(a) (b)

(c) (d)

Figure S4. Rheological properties of LAPONITE® dispersions/gels at T = 37°C, prepared in 

Milli-Q water. Storage moduli (a), and loss moduli (b) versus angular frequency. Increasing 

LAPONITE® concentration increases the viscoelastic moduli. Effect of temperature and 

LAPONITE® concentration on the storage (at ω ~ 10 rad s-1, c) and loss (at ω ~ 10 rad s-1, d) 

moduli of LAPONITE® dispersions/gels.
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Gelatin 3%, T=37°C
(a) (b)

(c) (d)

Figure S5. Rheological properties of gelatin solutions at T = 37 °C, prepared in Milli-Q water, 

PBS, and media. Storage moduli (a), and loss moduli (b) versus angular frequency. Effect of 

temperature and media on the storage moduli (at ω ~ 10 rad s-1, c) and loss moduli (at ω ~ 10 rad 

s-1, d) of gelatin solutions.
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LAPONITE® 3%-Gelatin 1%, T=25°C
(a) (b)

LAPONITE® 2%-Gelatin 1%, T=25°C
(c) (d)

Figure S6. Rheological properties of LAPONITE®-gelatin (1%) shear-thinning hydrogels 

prepared by mixing exfoliated LAPONITE® with gelatin dissolved in Milli-Q water, PBS, and 

DMEM at 25°C. Storage (a,c) and loss moduli (b,d) versus angular frequency. 
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LAPONITE® 6%-Gelatin 3%, T=25°C
(a) (b)

LAPONITE® 3%-Gelatin 3%, T=25°C
(c) (d)

LAPONITE® 2%-Gelatin 3%, T=25°C
(e) (f)

Figure S7. Rheological properties of LAPONITE®-gelatin (3%) shear-thinning hydrogels 

prepared by mixing exfoliated LAPONITE® with gelatin dissolved in Milli-Q water, PBS, and 

DMEM at 25°C. Storage (a,c,e) and loss moduli (b,d,f) versus angular frequency. 
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(a) LAPONITE®

(b) Gelatin 3%, T=25°C (c) Gelatin 3%, T=37°C

Figure S8. Dynamics of injection force through the 5F catheter for LAPONITE® (a) and gelatin 

(b,c). The higher the LAPONITE® concentration, the higher the injection force, regardless of 

temperature. Gelatin, a heat-sensitive biopolymer, undergoes phase transition at room 

temperature, resulting in an increase in the injection force.   
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Movies showing the injection of LAPONITE®-gelatin STBs prepared in water (M1), PBS (M2), 

and DMEM (M3) through a 3 mL Luer lock syringe, equipped with a 23 G needle (BD Precision 

Glide 23G×1” thin wall M, with L = 38 mm and ID = 0.34 mm). Phase separation was observed 

in PBS and DMEM. 


