Effect of ionic strength on shear-thinning nanoclay-polymer composite hydrogels

Amir Sheikhi1,2,3,4+, Samson Afewerki1,2,+, Rahmi Oktlu5, Akhilesh K. Gaharwar6,7,8*, Ali Khademhossein1,1,3,4,9,10,11,12*

1Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
2Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
3Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA.
4Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA.
5Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, Arizona 85259, USA.
6Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
7Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
8Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA.
9Department of Radiology, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA.

These authors contributed equally to this work.

*Corresponding Author Email: gaharwar@tamu.edu (AKG); khademh@ucla.edu (AK)
10Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA.

11Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea.

12Center of Nanotechnology, Department of physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
Figure S1. Dynamic light scattering (DLS) and electrokinetic analyses of LAPONITE®-gelatin (LP-G) suspensions, yielding hydrodynamic size (a) and ζ-potential (b). At a constant gelatin concentration, increasing LAPONITE® concentration (e.g., 2% compared to 1%, Figure 1c), increases the hydrodynamic size of LAPONITE®-gelatin particles as a result of polymer-mediated nanoplatelet bridging. The stable size of particles suggests that the gelatin-stabilized LAPONITE® clusters form a stable colloidal suspension.
Figure S2. Images of LAPONITE®, gelatin, and different compositions of LAPONITE®-gelatin mixtures. (a-1) LAPONITE® (6 wt%) in Milli-Q water, (a-2) Gelatin (2 wt%) in Milli-Q water, (a-3) Gelatin (2 wt%) in PBS, (a-4) Gelatin (2 wt%) in DMEM. STBs prepared by mixing (b-1) LAPONITE® (6 wt%) in Milli-Q water and gelatin (2 wt%) in Milli-Q water, (b-2): LAPONITE® (6 wt%) in Milli-Q water and gelatin (2 wt%) in PBS, and (b-3) LAPONITE® (6 wt%) in Milli-Q water and gelatin (2 wt%) in DMEM. STBs prepared by mixing (c-1) LAPONITE® (12 wt%) in Milli-Q water and gelatin (6 wt%) in Milli-Q water (1:1), (c-2) LAPONITE® (12 wt%) in Milli-Q water and gelatin (6 wt%) in PBS, and (c-3) LAPONITE® (12 wt%) in Milli-Q water and gelatin (6 wt%) in DMEM.
Figure S3. Images of nanocomposites prepared by mixing (1:1 v/v) water-dispersed LAPONITE® (2 wt%) with gelatin (0.1 wt% in PBS or DMEM). The dispersions undergo phase separation.
Figure S4. Rheological properties of LAPONITE® dispersions/gels at $T = 37^\circ C$, prepared in Milli-Q water. Storage moduli (a), and loss moduli (b) versus angular frequency. Increasing LAPONITE® concentration increases the viscoelastic moduli. Effect of temperature and LAPONITE® concentration on the storage (at $\omega \sim 10$ rad s$^{-1}$, c) and loss (at $\omega \sim 10$ rad s$^{-1}$, d) moduli of LAPONITE® dispersions/gels.
Figure S5. Rheological properties of gelatin solutions at $T = 37^\circ C$, prepared in Milli-Q water, PBS, and media. Storage moduli (a), and loss moduli (b) versus angular frequency. Effect of temperature and media on the storage moduli (at $\omega \sim 10$ rad s$^{-1}$, c) and loss moduli (at $\omega \sim 10$ rad s$^{-1}$, d) of gelatin solutions.
Figure S6. Rheological properties of LAPONITE®-gelatin (1%) shear-thinning hydrogels prepared by mixing exfoliated LAPONITE® with gelatin dissolved in Milli-Q water, PBS, and DMEM at 25°C. Storage (a,c) and loss moduli (b,d) versus angular frequency.
Figure S7. Rheological properties of LAPONITE®-gelatin (3%) shear-thinning hydrogels prepared by mixing exfoliated LAPONITE® with gelatin dissolved in Milli-Q water, PBS, and DMEM at 25°C. Storage (a,c,e) and loss moduli (b,d,f) versus angular frequency.
Figure S8. Dynamics of injection force through the 5F catheter for LAPONITE® (a) and gelatin (b,c). The higher the LAPONITE® concentration, the higher the injection force, regardless of temperature. Gelatin, a heat-sensitive biopolymer, undergoes phase transition at room temperature, resulting in an increase in the injection force.
Movies showing the injection of LAPONITE®-gelatin STBs prepared in water (M1), PBS (M2), and DMEM (M3) through a 3 mL Luer lock syringe, equipped with a 23 G needle (BD Precision Glide 23G×1” thin wall M, with L = 38 mm and ID = 0.34 mm). Phase separation was observed in PBS and DMEM.