Appendix A. Electronic Supplementary Information

Biodistribution and toxicological evaluation of micron- and nano-sized erythrocyte-derived optical particles in healthy Swiss Webster mice

Raviraj Vankayalaa, Jenny T. Macb, Joshua M. Burnsa, Eugene Dunnc, Stefanie Carrollc, Edver M. Bahenaa, Dipti K. Patela, Stephen Griffeyc, Bahman Anvaria,b,*

(\textit{i equally contributed})

aDepartment of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside CA 92521, USA

bDepartment of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside CA 92521, USA

cComparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Sacramento, CA 95616, USA

*Email Address: anvarib@ucr.edu

Assessment of ICG leakage from \(\mu\text{NETs}\) and \(n\text{NETs}\) under physiological temperature

Absorption spectra of \(\mu\text{NETs}\) and \(n\text{NETs}\) and their supernatants after centrifugation at physiological temperature in dark over a period of 48 hours are shown in Figs. S1(A) and (B), respectively. Using equation 2 (see manuscript text), the percentage leakage of ICG from \(\mu\text{NETs}\) and \(n\text{NETs}\) were calculated as \(\approx 9.1\%\) and \(5.6\%\), respectively, at 48 hours post fabrication (Fig. S1(C)).
Fig. S1. Time-dependent absorption spectra of (A) μNETs, and (B) nNETs and the corresponding supernatant solutions at 37 °C. (C) % ICG leakage (ν) from μNETs and nNETs as a function of time.